Английская Википедия:Characteristic mode analysis

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Characteristic modes (CM) form a set of functions which, under specific boundary conditions, diagonalizes operator relating field and induced sources. Under certain conditions, the set of the CM is unique and complete (at least theoretically) and thereby capable of describing the behavior of a studied object in full.

This article deals with characteristic mode decomposition in electromagnetics, a domain in which the CM theory has originally been proposed.

Background

CM decomposition was originally introduced as set of modes diagonalizing a scattering matrix.[1][2] The theory has, subsequently, been generalized by Harrington and Mautz for antennas.[3][4] Harrington, Mautz and their students also successively developed several other extensions of the theory.[5][6][7][8] Even though some precursors[9] were published back in the late 1940s, the full potential of CM has remained unrecognized for an additional 40 years. The capabilities of CM were revisited[10] in 2007 and, since then, interest in CM has dramatically increased. The subsequent boom of CM theory is reflected by the number of prominent publications and applications.

Definition

For simplicity, only the original form of the CM – formulated for perfectly electrically conducting (PEC) bodies in free space — will be treated in this article. The electromagnetic quantities will solely be represented as Fourier's images in frequency domain. Lorenz's gauge is used.

Файл:CMoriginalStructure.png
Example of a scatterer <math>\Omega</math> composed of a perfect electric conductor.

The scattering of an electromagnetic wave on a PEC body is represented via a boundary condition on the PEC body, namely

<math> \boldsymbol{\hat{n}} \times \boldsymbol{E}^\mathrm{i} = -\boldsymbol{\hat{n}} \times \boldsymbol{E}^\mathrm{s}, </math>

with <math>\boldsymbol{\hat{n}}</math> representing unitary normal to the PEC surface, <math>\boldsymbol{E}^\mathrm{i}</math> representing incident electric field intensity, and <math>\boldsymbol{E}^\mathrm{s}</math> representing scattered electric field intensity defined as

<math>\boldsymbol{E}^\mathrm{s} = -\mathrm{j}\omega\boldsymbol{A} - \nabla\varphi, </math>

with <math>\mathrm{j}</math> being imaginary unit, <math>\omega</math> being angular frequency, <math>\boldsymbol{A}</math> being vector potential

<math> \boldsymbol{A} \left(\boldsymbol{r}\right) = \mu_0 \int\limits_\Omega \boldsymbol{J} \left(\boldsymbol{r}'\right) G \left(\boldsymbol{r}, \boldsymbol{r}'\right) \, \mathrm{d}S, </math>

<math>\mu_0</math> being vacuum permeability, <math>\varphi</math> being scalar potential

<math> \varphi \left(\boldsymbol{r}\right) = - \frac{1}{\mathrm{j}\omega\epsilon_0} \int\limits_\Omega \nabla\cdot\boldsymbol{J} \left(\boldsymbol{r}'\right) G \left(\boldsymbol{r}, \boldsymbol{r}'\right) \, \mathrm{d}S, </math>

<math>\epsilon_0</math> being vacuum permittivity, <math>G \left(\boldsymbol{r},\boldsymbol{r}'\right)</math> being scalar Green's function

<math> G \left(\boldsymbol{r},\boldsymbol{r}'\right) = \frac{\mathrm{e}^{-\mathrm{j}k\left|\boldsymbol{r} - \boldsymbol{r}'\right|}}{4\pi \left|\boldsymbol{r} - \boldsymbol{r}'\right|} </math>

and <math>k</math> being wavenumber. The integro-differential operator <math>\boldsymbol{\hat{n}} \times \boldsymbol{E}^\mathrm{s} \left(\boldsymbol{J} \right)</math> is the one to be diagonalized via characteristic modes.

The governing equation of the CM decomposition is

<math> \mathcal{X} \left(\boldsymbol{J}_n\right) = \lambda_n \mathcal{R} \left(\boldsymbol{J}_n\right) \qquad\mathrm{(1)} </math>

with <math>\mathcal{R}</math> and <math>\mathcal{X}</math> being real and imaginary parts of impedance operator, respectively: <math>\mathcal{Z}(\cdot) = \mathcal{R}(\cdot) + \mathrm{j}\mathcal{X}(\cdot)\,.</math> The operator, <math>\mathcal{Z}</math> is defined by

<math> \mathcal{Z} \left(\boldsymbol{J}\right) = \boldsymbol{\hat{n}} \times \boldsymbol{\hat{n}} \times \boldsymbol{E}^\mathrm{s} \left(\boldsymbol{J}\right). \qquad\mathrm{(2)} </math>

The outcome of (1) is a set of characteristic modes <math>\left\{\boldsymbol{J}_n\right\}</math>, <math>n\in \left\{1,2,\dots\right\}</math>, accompanied by associated characteristic numbers <math>\left\{\lambda_n\right\}</math>. Clearly, (1) is a generalized eigenvalue problem, which, however, cannot be analytically solved (except for a few canonical bodies[11]). Therefore, the numerical solution described in the following paragraph is commonly employed.

Matrix formulation

Discretization <math>\mathcal{D}</math> of the body of the scatterer <math>\Omega</math> into <math>M</math> subdomains as <math>\Omega^M = \mathcal{D}\left(\Omega\right)</math> and using a set of linearly independent piece-wise continuous functions <math>\left\{\boldsymbol{\psi}_n\right\}</math>, <math>n\in\left\{1,\dots,N\right\}</math>, allows current density <math>\boldsymbol{J}</math> to be represented as

Файл:CMdiscretizedStructure.png
Example of a scatterer's triangular (Delaunay) discretization <math>\Omega^M</math>.
<math> \boldsymbol{J} \left(\boldsymbol{r}\right) \approx \sum\limits_{n=1}^N I_n \boldsymbol{\psi}_n \left(\boldsymbol{r}\right) </math>

and by applying the Galerkin method, the impedance operator (2)

<math> \mathbf{Z} = \mathbf{R} + \mathrm{j} \mathbf{X} = \left[Z_{uv}\right] = \left[\,\int\limits_\Omega \boldsymbol{\psi}_u^\ast \cdot \mathcal{Z} \left(\boldsymbol{\psi}_v\right) \, \mathrm{d}S\right]. </math>

The eigenvalue problem (1) is then recast into its matrix form

<math> \mathbf{X} \mathbf{I}_n = \lambda_n \mathbf{R}\mathbf{I}_n, </math>

which can easily be solved using, e.g., the generalized Schur decomposition or the implicitly restarted Arnoldi method yielding a finite set of expansion coefficients <math>\left\{\mathbf{I}_n\right\}</math> and associated characteristic numbers <math>\left\{\lambda_n\right\}</math>. The properties of the CM decomposition are investigated below.

Файл:CMmode1.png
The first (dominant) characteristic mode of a shape <math>\Omega^M</math>.
Файл:CMmode2.png
The second characteristic mode of a shape <math>\Omega^M</math>.

Properties

The properties of CM decomposition are demonstrated in its matrix form.

First, recall that the bilinear forms

<math> P_\mathrm{r} \approx \frac{1}{2} \mathbf{I}^\mathrm{H} \mathbf{R} \mathbf{I} \geq 0 </math>

and

<math> 2\omega\left(W_\mathrm{m} - W_\mathrm{e}\right) \approx \frac{1}{2} \mathbf{I}^\mathrm{H} \mathbf{X} \mathbf{I}, </math>

where superscript <math>^\mathrm{H}</math> denotes the Hermitian transpose and where <math>\mathbf{I}</math> represents an arbitrary surface current distribution, correspond to the radiated power and the reactive net power,[12] respectively. The following properties can then be easily distilled:

  • The weighting matrix <math>\mathbf{R}</math> is theoretically positive definite and <math>\mathbf{X}</math> is indefinite. The Rayleigh quotient
<math> \lambda_n \approx \frac{\mathbf{I}_n^\mathrm{H}\mathbf{X}\mathbf{I}_n}{\mathbf{I}_n^\mathrm{H}\mathbf{R}\mathbf{I}_n} </math>

then spans the range of <math>-\infty \leq \lambda_n \leq \infty</math> and indicates whether the characteristic mode is capacitive (<math>\lambda_n < 0</math>), inductive (<math>\lambda_n > 0</math>), or in resonance (<math>\lambda_n = 0</math>). In reality, the Rayleigh quotient is limited by the numerical dynamics of the machine precision used and the number of correctly found modes is limited.

  • The characteristic numbers evolve with frequency, i.e., <math>\lambda_n = \lambda_n \left(\omega\right)</math>, they can cross each other, or they can be the same (in case of degeneracies[13]). For this reason, the tracking of modes is often applied to get smooth curves <math>\lambda_n \left(\omega\right)</math>.[14][15][16][17][18] Unfortunately, this process is partly heuristic and the tracking algorithms are still far from perfection.[11]
  • The characteristic modes can be chosen as real-valued functions, <math>\mathbf{I}_n \in \mathbb{R}^{N\times 1}</math>. In other words, characteristic modes form a set of equiphase currents.
  • The CM decomposition is invariant with respect to the amplitude of the characteristic modes. This fact is used to normalize the current so that they radiate unitary radiated power
<math> \frac{1}{2} \mathbf{I}_m^\mathrm{H} \mathbf{Z} \mathbf{I}_n \approx \left(1 + \mathrm{j} \lambda_n\right) \delta_{mn}. </math>

This last relation presents the ability of characteristic modes to diagonalize the impedance operator (2) and demonstrates far field orthogonality, i.e.,

<math> \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} \int\limits_0^{2\pi} \int\limits_0^\pi \boldsymbol{F}_m^\ast \cdot \boldsymbol{F}_n \sin \vartheta \, \mathrm{d} \vartheta \, \mathrm{d} \varphi = \delta_{mn}. </math>

Modal quantities

The modal currents can be used to evaluate antenna parameters in their modal form, for example:

  • modal far-field <math>\boldsymbol{F}_n \left(\boldsymbol{\hat{e}}, \boldsymbol{\hat{r}}\right)</math> (<math>\boldsymbol{\hat{e}}</math> — polarization, <math>\boldsymbol{\hat{r}}</math> — direction),[3]
  • modal directivity <math>\boldsymbol{D}_n \left(\boldsymbol{\hat{e}}, \boldsymbol{\hat{r}}\right)</math>,
  • modal radiation efficiency <math>\eta_n</math>,[19]
  • modal quality factor <math>Q_n</math>,[20]
  • modal impedance <math>Z_n</math>.

These quantities can be used for analysis, feeding synthesis, radiator's shape optimization, or antenna characterization.

Applications and further development

The number of potential applications is enormous and still growing:

The prospective topics include

  • electrically large structures calculated using MLFMA,[38]
  • dielectrics,[7][39]
  • use of Combined Field Integral Equation,[40]
  • periodic structures,
  • formulation for arrays.[41]

Software

CM decomposition has recently been implemented in major electromagnetic simulators, namely in FEKO,[42] CST-MWS,[43] and WIPL-D.[44] Other packages are about to support it soon, for example HFSS[45] and CEM One.[46] In addition, there is a plethora of in-house and academic packages which are capable of evaluating CM and many associated parameters.

Alternative bases

CM are useful to understand radiator's operation better. They have been used with great success for many practical purposes. However, it is important to stress that they are not perfect and it is often better to use other formulations such as energy modes,[47] radiation modes,[47] stored energy modes[32] or radiation efficiency modes.[48]

References

Шаблон:Reflist

  1. Ошибка цитирования Неверный тег <ref>; для сносок Garbacz1 не указан текст
  2. Ошибка цитирования Неверный тег <ref>; для сносок Garbacz2 не указан текст
  3. 3,0 3,1 Ошибка цитирования Неверный тег <ref>; для сносок HarringtonMautz1 не указан текст
  4. Ошибка цитирования Неверный тег <ref>; для сносок HarringtonMautz2 не указан текст
  5. Ошибка цитирования Неверный тег <ref>; для сносок ChangHarrington1 не указан текст
  6. Ошибка цитирования Неверный тег <ref>; для сносок HarringtonMautz3 не указан текст
  7. 7,0 7,1 Ошибка цитирования Неверный тег <ref>; для сносок HarringtonMautzEtAl1 не указан текст
  8. Ошибка цитирования Неверный тег <ref>; для сносок Hajj1 не указан текст
  9. Ошибка цитирования Неверный тег <ref>; для сносок Montgomery1 не указан текст
  10. Ошибка цитирования Неверный тег <ref>; для сносок CabedoEtAl1 не указан текст
  11. 11,0 11,1 11,2 Ошибка цитирования Неверный тег <ref>; для сносок CapekEtAl1 не указан текст
  12. Ошибка цитирования Неверный тег <ref>; для сносок Harrington1 не указан текст
  13. Ошибка цитирования Неверный тег <ref>; для сносок SchabBernhard1 не указан текст
  14. Ошибка цитирования Неверный тег <ref>; для сносок CapekEtAl2 не указан текст
  15. Ошибка цитирования Неверный тег <ref>; для сносок RainesRojas1 не указан текст
  16. Ошибка цитирования Неверный тег <ref>; для сносок LudicsEtAl1 не указан текст
  17. Ошибка цитирования Неверный тег <ref>; для сносок MiersLau1 не указан текст
  18. Ошибка цитирования Неверный тег <ref>; для сносок SafinManteuffel1 не указан текст
  19. Ошибка цитирования Неверный тег <ref>; для сносок CapekEtAl3 не указан текст
  20. Ошибка цитирования Неверный тег <ref>; для сносок CapekEtAl4 не указан текст
  21. Ошибка цитирования Неверный тег <ref>; для сносок WuSu1 не указан текст
  22. Ошибка цитирования Неверный тег <ref>; для сносок VogelEtAl1 не указан текст
  23. Ошибка цитирования Неверный тег <ref>; для сносок YangAdams1 не указан текст
  24. Ошибка цитирования Неверный тег <ref>; для сносок LiEtAl1 не указан текст
  25. Ошибка цитирования Неверный тег <ref>; для сносок DengEtAl1 не указан текст
  26. Ошибка цитирования Неверный тег <ref>; для сносок YangAdams2 не указан текст
  27. Ошибка цитирования Неверный тег <ref>; для сносок EichlerEtAl1 не указан текст
  28. Ошибка цитирования Неверный тег <ref>; для сносок RezaiesarlakManteghi1 не указан текст
  29. Ошибка цитирования Неверный тег <ref>; для сносок BohannonBernhard1 не указан текст
  30. Ошибка цитирования Неверный тег <ref>; для сносок ChenEtAl1 не указан текст
  31. Ошибка цитирования Неверный тег <ref>; для сносок AustinEtAl1 не указан текст
  32. 32,0 32,1 Ошибка цитирования Неверный тег <ref>; для сносок GustafssonEtAl1 не указан текст
  33. Ошибка цитирования Неверный тег <ref>; для сносок AdamsEtAl1 не указан текст
  34. Ошибка цитирования Неверный тег <ref>; для сносок SafinManteuffel2 не указан текст
  35. Ошибка цитирования Неверный тег <ref>; для сносок HassanEtAl1 не указан текст
  36. Ошибка цитирования Неверный тег <ref>; для сносок RabahEtAl1 не указан текст
  37. Ошибка цитирования Неверный тег <ref>; для сносок RabahEtAl2 не указан текст
  38. Ошибка цитирования Неверный тег <ref>; для сносок DaiEtAl1 не указан текст
  39. Ошибка цитирования Неверный тег <ref>; для сносок GuoEtAl1 не указан текст
  40. Ошибка цитирования Неверный тег <ref>; для сносок DaiEtAl2 не указан текст
  41. Ошибка цитирования Неверный тег <ref>; для сносок TzanidisEtAl1 не указан текст
  42. Ошибка цитирования Неверный тег <ref>; для сносок FEKO не указан текст
  43. Ошибка цитирования Неверный тег <ref>; для сносок CST-MWS не указан текст
  44. Ошибка цитирования Неверный тег <ref>; для сносок WIPLD не указан текст
  45. Ошибка цитирования Неверный тег <ref>; для сносок HFSS не указан текст
  46. Ошибка цитирования Неверный тег <ref>; для сносок CEMOne не указан текст
  47. 47,0 47,1 Ошибка цитирования Неверный тег <ref>; для сносок SchabBernhard2 не указан текст
  48. Ошибка цитирования Неверный тег <ref>; для сносок JelinekCapek1 не указан текст