Английская Википедия:Chebyshev–Gauss quadrature

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

<math>\int_{-1}^{+1} \frac {f(x)} {\sqrt{1 - x^2} }\,dx</math>

and

<math>\int_{-1}^{+1} \sqrt{1 - x^2} g(x)\,dx.</math>

In the first case

<math>\int_{-1}^{+1} \frac {f(x)} {\sqrt{1-x^2} }\,dx \approx \sum_{i=1}^n w_i f(x_i)</math>

where

<math>x_i = \cos \left( \frac {2i-1} {2n} \pi \right)</math>

and the weight

<math>w_i = \frac {\pi} {n}.</math>[1]

In the second case

<math>\int_{-1}^{+1} \sqrt{1-x^2} g(x)\,dx \approx \sum_{i=1}^n w_i g(x_i)</math>

where

<math>x_i = \cos \left( \frac {i} {n+1} \pi \right) </math>

and the weight

<math> w_i = \frac {\pi} {n+1} \sin^2 \left( \frac {i} {n+1} \pi \right). \,</math>[2]

See also

References

  1. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, Шаблон:ISBN. Equation 25.4.38.
  2. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, Шаблон:ISBN. Equation 25.4.40.

External links