Английская Википедия:Classical shadow

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Orphan

In quantum computing, classical shadow is a protocol for predicting functions of a quantum state using only a logarithmic number of measurements.[1] Given an unknown state <math> \rho </math>, a tomographically complete set of gates <math> U</math> (e.g. Clifford gates), a set of <math>M</math> observables <math>\{O_{i}\}</math> and a quantum channel <math>\mathcal{E}</math> defined by randomly sampling from <math>U</math>, applying it to <math>\rho</math> and measuring the resulting state, predict the expectation values <math>\operatorname{tr}(O_{i} \rho)</math>.[2] A list of classical shadows <math>S</math> is created using <math>\rho</math>, <math>U</math> and <math>\mathcal{E}</math> by running a Shadow generation algorithm. When predicting the properties of <math>\rho</math>, a Median-of-means estimation algorithm is used to deal with the outliers in <math>S</math>.[3] Classical shadow is useful for direct fidelity estimation, entanglement verification, estimating correlation functions, and predicting entanglement entropy.[1]

Recently, researchers have built on classical shadow to devise provably efficient classical machine learning algorithms for a wide range of quantum many-body problems.[4] For example, machine learning models could learn to solve ground states of quantum many-body systems and classify quantum phases of matter.

Шаблон:Algorithm-begin

Inputs <math>N</math> copies of an unknown <math>n</math>-qubit state <math>\rho</math>

                  A list of unitaries <math>U</math> that is tomographically complete

                  A classical description of a quantum channel <math>\mathcal{E}^{-1}</math>

  1. For <math>i</math> ranging from <math>1</math> to <math>N</math>:
    1. Choose a random unitary <math>U_{i}</math> from <math>U</math>
    2. Apply <math>U_{i}</math> to <math>\rho</math> to get a state <math>\rho_{i}</math>
    3. Perform a computational basis measurement on <math>\rho_{i}</math> for an outcome <math>b_{i} \in \{0, 1\}^{n}</math>
    4. Classically compute <math>\mathcal{E}^{-1}(U_{i}^{\dagger}|b_{i}\rangle\langle b_{i}|U_{i})</math> and add it to a list <math>S</math>
Return <math>S</math>


Шаблон:Algorithm-end

Шаблон:Algorithm-begin

Inputs A list of observables <math> O_{1}, ...., O_{M} </math>

                  A classical shadow <math>S(\rho; N) = [\hat{\rho}_1, \ldots, \hat{\rho}_N]</math>

                  A positive integer <math>K</math> that specifies how many linear estimates of <math>\rho</math> to calculate.

Return A list <math>[o_{1}, ..., o_{M}] </math> where <math>o_{i} = \mathrm{median}(\mathrm{trace}(O_{1} p_{1}),..., \mathrm{trace}(O_{1} p_{K})) </math>
where <math>p_{k} = \frac{1}{[\frac{N}{K}]} \sum_{i = (k-1)[\frac{N}{K}] + 1}^{k [\frac{N}{K}]} \hat{\rho}_{i}</math> and where <math>k = 1, ..., K</math>.


Шаблон:Algorithm-end

References

Шаблон:Reflist

Шаблон:Quantum computing