Английская Википедия:Cobalt(III) chloride

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Primary Шаблон:Chembox

Cobalt(III) chloride or cobaltic chloride is an unstable and elusive compound of cobalt and chlorine with formula Шаблон:Chem. In this compound, the cobalt atoms have a formal charge of +3.[1]

The compound has been reported to exist in the gas phase at high temperatures, in equilibrium with cobalt(II) chloride and chlorine gas.[2][3] It has also been found to be stable at very low temperatures, dispersed in a frozen argon matrix.[4]

Some articles from the 1920s and 1930s claim the synthesis of bulk amounts of this compound in pure form;[5][6] however, those results do not seem to have been reproduced, or have been attributed to other substances like the hexachlorocobaltate(III) anion Шаблон:Chem.[1] Those earlier reports claim that it gives green solutions in anhydrous solvents such as ethanol and diethyl ether, and that it is stable only a very low temperatures (below −60 °C).[7]

Structure and properties

The infrared spectrum of the compound in frozen argon indicates that the isolated Шаблон:Chem molecule is planar with D3h symmetry.[4]

A Scientific study of the stability of this and other metal trihalides at 50 °C was published by Nelsoon and Sharpe in 1956.[8]

Aerodynamic properties for the gas phase have been determined by the Glushko Thermocenter of the Russian Academy of Sciences.[9]

Preparation

Cobalts trichlorides was detected in 1952 by Schäfer and Krehl in the gas phase when cobalt(II) chloride Шаблон:Chem is heated in an atmosphere of chlorine Шаблон:Chem. The trichloride is formed through the equilibrium

2Шаблон:Chem + Шаблон:Chem ↔ 2 Шаблон:Chem

At 918 K (below the melting point of Шаблон:Chem, 999 K), the trichloride was the predominant cobalt species in the vapor, with partial pressure of 0.72 mm Hg versus 0.62 for the dichloride. However, equilibrium shifts to the left at higher temperatures. At 1073 K, the partial pressures were 7.3 and 31.3 mm Hg, respectively.[2][10][3]

Cobalt trichloride, in amounts sufficient to study spectroscopically, was obtained by Green and others in 1983, by sputtering cobalt electrodes with chlorine atoms and trapping the resulting molecules in frozen argon at 14 K.[4]

A report from 1969 claims that treatment of solid cobalt(III) hydroxide Шаблон:Chem·Шаблон:Chem with anhydrous ether saturated with Шаблон:Chem at −20 °C produces a green solution (stable at −78 °C) with the characteristic spectrum of Шаблон:Chem.[1]

In a 1932 report, the compound was claimed to arise in the electrolysis of cobalt(II) chloride in anhydrous ethanol.[7]

Related compounds

The hexachlorocobaltate(III) anion Шаблон:Chem has been identified in preparations of cobalt(III) salts and hydrochloric acid Шаблон:Chem in glacial acetic acid.[1]

In solutions of cobalt(III) salts with chloride ions, the anionic complexes Шаблон:Chem and Шаблон:Chem are present.[11]

Trichlorides of cobalt(III) complexed with various ligands, such as organic amines, can be quite stable. In particular, hexamminecobalt(III) chloride Шаблон:Chem is the archetypal Werner complex and has uses in biological research. Another classical example is tris(ethylenediamine)cobalt(III) chloride Шаблон:Chem.

References

Шаблон:Reflist

Шаблон:Cobalt compounds Шаблон:Chlorides

  1. 1,0 1,1 1,2 1,3 Arthur W. Chester, El-Ahmadi Heiba, Ralph M. Dessau, and William J. Koehl Jr. (1969): "The interaction of cobalt(III) with chloride ion in acetic acid". Inorganic and Nuclear Chemistry Letters, volume 5, issue 4, pages 277-283. Шаблон:Doi
  2. 2,0 2,1 Harald Schäfer and Kurt Krehl (1952): "Das gasförmige Kobalt(III)‐chlorid und seine thermochemischen Eigenschaften". Zeitschrift für anorganische und allgemeine Chemie, volume 268, issue 1‐2, pages 25-34. Шаблон:Doi
  3. 3,0 3,1 W. D. Halstead (1975): "A review of saturated vapour pressures and allied data for the principal corrosion products of iron, chromium, nickel and cobalt in flue gases". Corrosion Science, volume 15, issues 6–12, pages 603-625. Шаблон:Doi
  4. 4,0 4,1 4,2 David W. Green, Dana P. McDermott, and Adelle Bergman (1983): "Infrared spectra of the matrix-isolated chlorides of iron, cobalt, and nickel." Journal of Molecular Spectroscopy, volume 98, issue 1, pages 111-124. Шаблон:Doi
  5. C. Schall and H. Markgraf (1924). Transactions of the American Electrochemical Society, volume 45, page 161.
  6. D. Hibert and C. Duval (1937): Comptes rendues, volume 204, page 780.
  7. 7,0 7,1 C. Schall (1932): "Zur anodischen Oxydation von Co und Ni‐Dichlorid (Nachtrag)." Zeitschrift für Elektrochemie, volume 38, page 27.
  8. P. G. Nelsoon and A. G. Sharpe (1966): "The variations in the thermal stabilities of the trichlorides, tribromides, and tri-iodides of the metals of the first transition series at 50 °C". Journal of the Chemical Society A: Inorganic, Physical, Theoretical, volume 1966,pages 501-511 Шаблон:Doi
  9. Scientific Group Thermodata Europe (2001): "Thermodynamic Properties of Compounds, Шаблон:Chem to Шаблон:Chem". In: Landolt-Börnstein - Group IV Physical Chemistry, Part 3: Compounds from Шаблон:Chemg to Шаблон:Chem; volume 19 A3. Шаблон:Doi Шаблон:ISBN
  10. Harald Schäfer and Günther Breil (1956): "Über die Neigung zur Bildung gasförmiger Trichloride bei den Elementen Cr, Mn, Fe, Co, Ni, untersucht mit der Reaktion Шаблон:Chem gas + 1/2 Шаблон:Chem = Шаблон:Chem gas". Zeitschrift für anorganische und allgemeine Chemie, volume 283, issue 1‐6, pages 304-313. Шаблон:Doi
  11. T. J. Conocchioli, G. H. Nancollas, and N. Sutin (1965): "The kinetics of the formation and dissociation of the monochloro complex of cobalt(III)". Inorganic Chemistry, volume 5, issue 1, pages 1-5. Шаблон:Doi