Английская Википедия:Cocinetas Basin

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox sedimentary basin The Cocinetas Basin (Шаблон:Lang-es) is a small sedimentary basin of approximately Шаблон:Convert in northeasternmost Colombia. The onshore pull-apart basin is located in the department of La Guajira at the border with Zulia, Venezuela. The basin is bound by three sets of hills; the Serranía de Jarara, Serranía Macuira and Serranía Cocinas, with the eastern boundary formed by the Gulf of Venezuela, part of the Caribbean Sea.

The basin was formed during the Paleogene as a result of the eastward movement of the Caribbean Plate along the northern edge of the South American Plate, leading to the deposition of a Middle Eocene to Middle Pleistocene sedimentary sequence of conglomerates, sandstones, siltstones, limestones and mudstones.

In the Cocinetas Basin, several fossiliferous stratigraphic units have been registered, providing an abundance of marine and continental vertebrate and invertebrate fossil fauna assemblages. The Uitpa, Jimol, Castilletes and Ware Formations contain numerous fossils of Neogene and Quaternary ages, both before and after the Great American Biotic Interchange (GABI), presenting new insights in the understanding of the variation in South American fauna related to the uplift of the Panama Block and the connection of North America and South America.

Description

Файл:Serrania de Macuira entrance.png
The Serranía de Macuira, with its natural park, is the northern boundary of the Cocinetas Basin. The mountain range has a unique climate in the region, hosting the only dry forests in an overall desert environment.

The Cocinetas Basin is a small onshore sedimentary basin of approximately Шаблон:Convert in the northeasternmost part of Colombia.[1] The northernmost onshore sedimentary basin of South America is clockwise bound by the Serranía de Jarara, the Macuira Fault separating the basin from the Serranía de Macuira, the Tucacas or Tortugas and Cocinetas Bays as part of the Gulf of Venezuela and the Serranía de Cocinas (in older literature referred to as Cosinas),[2] separated by the Cuisa Fault.[3]

The bounding fault to the south, the dextral Cuisa Fault with a lateral displacement of Шаблон:Convert,[4] has an extension of approximately Шаблон:Convert along a roughly east–west axis and the fault continues to the east underneath the Gulf of Venezuela. The fault is partly covered by Oligocene sediments.[5] The northern boundary of the pull-apart basin is formed by the roughly northwest–southeast-trending Macuira Fault, with an extension of about Шаблон:Convert. The sinistral oblique fault has a displacement of about Шаблон:Convert and uplifted the northeastern Serranía de Macuira.[6]

The basin is situated in its entirety in the municipality Uribia of the department of La Guajira. The southernmost tip of the basin borders the Venezuelan state of Zulia.[3] The villages of Uitpa, Castilletes and Puerto López are located inside the basin.[3][7][8]

The present-day climate in the basin is very dry and hot (Köppen: BSh), being in the desert of La Guajira. The temperature in tropical northern South America does not vary much across the year. July is the hottest month with an average temperature of Шаблон:Convert and January has a mean of Шаблон:Convert. Rain is sparse throughout the year, except for October, the wettest month with Шаблон:Convert of precipitation.[9] Alta Guajira is the driest region of Colombia and long periods of drought are common.[10]

Stratigraphy

Шаблон:Location map The stratigraphy of the Cocinetas Basin was first defined by Renz in 1960.[3] In 2015, Moreno et al. revised the stratigraphy of the basin in detail, redefining ages based on extensive fieldwork, biostratigraphy and 87Sr/86Sr isotope ratios. The basement of the basin, cropping out in the surrounding hills, is formed by the metamorphic Jarara Schist and the Paleozoic Macuira Gneiss.[8][11][12][13][14]

Sedimentation in the basin started during the Middle to Late Eocene with the Macarao Formation and continued again during the Late Oligocene, when the Siamaná Formation, a sequence of conglomerates and thick carbonates, was deposited. Overlying the Siamaná Formation is the Early Miocene Uitpa Formation, a thick sequence of calcareous mudstone interbedded with lithic sandstones. The Uitpa Formation is covererd by the Miocene Jimol and Castilletes Formations, composed mostly of lithic sandstones and mudstones, that are in certain areas highly fossiliferous. The last phase of preserved sedimentation is represented by the Pliocene Ware Formation, defined in 2015 by Moreno et al.[15]

The Tertiary (Paleogene to Late Pleistocene) of South America is subdivided into an own stratigraphy; the South American land mammal ages, (SALMA). This subdivision is used throughout the continent to indicate certain geologic intervals based on the occurrences of specific land mammals.[16]

Age SALMA Formation Thickness Lithologies Notes
style="background-color: Шаблон:Period color;" colspan=2 | Holocene Шаблон:Center
style="background-color: Шаблон:Period color;" | Late Pleistocene Lujanian
style="background-color: Шаблон:Period color;" | Mid Pleistocene Ensenadan
style="background-color: Шаблон:Period color;" | Early Pleistocene Uquian Ware Fm. Шаблон:Center Fine lithic to quartz sandstones, mudstones, pebbly conglomerates with sedimentary and metamorphic rock fragments, fossiliferous packstones & sandy to conglomeratic beds with high fossil content Шаблон:Center
style="background-color: Шаблон:Period color;" | Pliocene Chapadmalalan
style="background-color: Шаблон:Period color;" | Late Miocene Montehermosan
style="background-color: Шаблон:Period color;" rowspan=4 | Late Miocene
Mid Miocene
Huayquerian Шаблон:Center
Chasicoan
Mayoan
Laventan
style="background-color: Шаблон:Period color;" rowspan=2 | Mid Miocene Colloncuran Castilletes Fm. Шаблон:Center Fossiliferous mudstones, siltstones & medium-grained to conglomeratic fossiliferous lithic to quartzitic sandstones Шаблон:Center
Friasian
style="background-color: Шаблон:Period color;" rowspan=2 | Early Miocene Santacrucian Jimol Fm. Шаблон:Center Calcareous lithic & fossiliferous sandstones, siltstones & mudstones Шаблон:Center
Colhuehuapian Uitpa Fm. Шаблон:Center Calcareous mudstones interbedded with lithic sandstones Шаблон:Center
style="background-color: Шаблон:Period color;" | Late Oligocene Deseadan Siamaná Fm. Шаблон:Center Conglomerates & thick carbonates Шаблон:Center
style="background-color: Шаблон:Period color;" | Mid Oligocene Tinguirirican
style="background-color: Шаблон:Period color;" | Late Eocene Divisaderan Macarao Fm. Шаблон:Center Foraminifera-rich fine to medium grained calcareous sandstones intercalated with calcareous siltstones, cross-cut by veins of gypsum Шаблон:Center
style="background-color: Шаблон:Period color;" | Middle Eocene
style="background-color: Шаблон:Period color;" colspan=2 | Early Eocene Шаблон:Center
style="background-color: Шаблон:Period color;" colspan=2 | Paleocene
style="background-color: Шаблон:Period color;" colspan=2 | Late Cretaceous
style="background-color: Шаблон:Period color;" colspan=2 | Cretaceous Jarara Schist Basement Schists & phyllites with intercalations of quartzite & localised microgabbro Шаблон:Center
style="background-color: Шаблон:Period color;" colspan=2 | Jurassic Шаблон:Center
style="background-color: Шаблон:Period color;" colspan=2 | Triassic
style="background-color: Шаблон:Period color;" colspan=2 | Paleozoic Macuira Gneiss Basement Quartz-feldspathic, amphibolitic & biotitic gneisses, amphibolites, micaceous schists, migmatites, pegmatites & marbles Шаблон:Center

Depositional environments and correlations

Файл:Chapalmalania.jpg
The lower part of the mostly Pliocene Ware Formation was deposited in a fluvio-deltaic coastal environment, where the carnivorous Chapalmalania foraged

The invertebrate fauna of the Jimol Formation is similar to the fauna found in the latest Early Miocene Cantaure Formation of Venezuela and the Culebra Formation of Panama.[17] The Jimol Formation was deposited in a shallow marine environment, inner shelf depth (less than Шаблон:Convert water depth). This unit is correlated with the upper Agua Clara and lower Cerro Pelao Formations of the Venezuelan Falcón Basin.[18]

The invertebrate fauna of the Castilletes Formation is highly similar not only to that of the underlying Jimol Formation, but also to the Cantaure Formation of Venezuela.[19] The Castilletes Formation was deposited in a shallow marine (estuarine, lagoonal, and shallow subtidal) to fluvio-deltaic environment with strong fluvial influence. The Castilletes Formation correlates with the upper Cerro Pelado and Querales Formations of the Venezuelan Falcón Basin. This unit is also correlative with the Cantaure Formation of the Paraguaná Peninsula in Venezuela.[20]

The marine invertebrate fauna of the Ware Formation shows a greater similarity with modern assemblages offshore of the Guajira Peninsula than with those of the underlying units.[21] The base of the Ware Formation was deposited in a fluvio-deltaic environment, whereas the marine invertebrate assemblage at the top of the unit contains taxa typical of exposed open-ocean shoreface and nearshore settings, but with proximity to coral reef habitats. The Ware Formation correlates with the San Gregorio Formation in the Venezuelan Falcón Basin.[22]

Tectonic history

Шаблон:See also

Файл:Pull apart basin.jpg
Sketch of a pull-apart basin
Paleogeography of Colombia
Файл:Blakey 065Ma - COL.jpg
Шаблон:Small
Файл:Blakey 050Ma - COL.jpg
Шаблон:Small
Файл:Blakey 035Ma - COL.jpg
Шаблон:Small
Файл:Blakey 020Ma - COL.jpg
Шаблон:Small
Файл:Blakey 000Ma - COL.jpg
Шаблон:Small

The tectonic history of the Cocinetas Basin, a pull-apart basin formed on top of Mesozoic basement underlain by oceanic crust, goes back to the Paleogene.[23] Farther to the south, in the Cesar-Ranchería Basin, the Paleocene, absent in the Cocinetas Basin, is represented by the first neotropic forest in the world, with megafauna as the largest recorded snake, Titanoboa cerrejonensis, with an estimated length of Шаблон:Convert and a weight of Шаблон:Convert, today found in the Cerrejón Formation, dated to 60 to 58 Ma. It has been estimated on the basis of the fossil flora, pollen and large reptiles that the mean annual temperature was between Шаблон:Convert and yearly precipitation ranging from Шаблон:Convert per year.[24]

North of the Oca Fault, the oldest sedimentary sequence of the Cocinetas Basin, the Macarao Formation, is the oldest sedimentary unit of both the higher La Guajira area (the Cocinetas Basin) as well as the lower La Guajira area. This formation was deposited in a phase that is informally called "rifting", because of the formation of half grabens in the Late Eocene, though no real rifting occurred in the area.[25] Shortly after deposition, during the Early Oligocene, the Macarao Formation was heavily deformed, creating the series of hills that today still surround the Cocinetas Basin.[26] This transtensional deformation was caused by the eastward movement of the Caribbean Plate along the South American Plate, when the Caribbean volcanic arc was located just north of the Cocinetas Basin.[27] The main fault movement forming the pull-apart basin of Cocinetas was caused by the dextral Cuisa Fault, active from the Paleocene to the Eocene.[23]

The transtensional phase of the Early Oligocene was followed by the deposition of the unconformably overlying Siamaná Formation, characterised by a basal sequence of conglomerates, indicating tectonic uplift in the provenance areas, followed by reefal limestones rich in corals and algae.[28] A new phase of transtension took place in the Early to Middle Miocene, when the Uitpa, Jimol and Castilletes Formations were deposited.[25] The initial phase of uplift of the Isthmus of Panama, has been dated to this period, at around 12 Ma.[29]

The Andean orogeny, represented by the tectonic uplift of the Colombian Eastern Ranges and its northern extension, the Serranía del Perijá, caused tilting and uplift in the Cocinetas Basin in the Late Miocene and Early Pliocene, when the Neogene hiatus separates the Castilletes Formation from the Ware Formation.[25] The end of the Neogene corresponded to a marine platform setting, interrupted by the presence of a series of highs; the present-day mountain ranges of the region. Between these elevated areas, reefal limestones were deposited in a relatively quiet marine environment.[30] During the Andean orogenic phase, the paleotemperatures in the basin dropped considerably; in the Baja Guajira area from Шаблон:Convert in the Early Miocene to Шаблон:Convert in the Late Miocene.[31] In the Late Miocene to Pliocene, the major faults to the southwest of the Cocinetas Basin, the Oca and Bucaramanga-Santa Marta Faults were tectonically active.[32]

Шаблон:Clearboth

Paleontology

Файл:Dalatias licha jaw.JPG
The Uitpa Formation provided fossils of the kitefin shark (Dalatias licha)
Файл:Purussaurus BW.jpg
Fossils of Purussaurus were found in the Castilletes Formation
Файл:Nothrotherium.JPG
Nothrotherium is one of the many ground sloth genera found in the Ware Formation

The Cocinetas Basin has provided several new species and genera of vertebrates and invertebrates of which many are still studied in detail. The Uitpa, Jimol, Castilletes, and Ware Formations preserve both a diverse continental vertebrate and a rich marine invertebrate fossil record that documents paleoenvironmental change through the Neogene. This succession shows a broad pattern of changing depositional environments associated with the tectonic history of the Cocinetas Basin.[33] Paleobathymetric and paleoenvironmental analyses suggest that the lower Uitpa Formation accumulated in water depths ranging from Шаблон:Convert, a deepening with respect to the underlying Siamaná Formation and leading to the collapse of coral reefs. This contrasts with an observed increase in sediment supply for the San Luis coral-reef ecosystems in the northwestern Falcón Basin.[34]

The Castilletes turtle fauna shares two taxa with the Middle Miocene La Venta Fauna (Chelus colombiana and Chelonoidis sp.), and one taxon with the Late Miocene of the Urumaco Formation and Western Amazonia areas. At least two hypotheses can be proposed to explain the early to middle Miocene geographical distribution of turtles in tropical South America. The first is based on the existence of the Pebas wetland system during the Middle Miocene, which could have served as a route for the dispersion of taxa facilitated by the connectivity between major and minor drainages, even with potential interruptions to this system due to the increasing uplifting of the Eastern Ranges of Colombia. Alternatively, the geographical distribution of tropical South American turtles during the Miocene can be explained as a relict of an extensive distribution reached during the Eocene or Oligocene and modified subsequently by the uplifting of the Andes and the changes in the pattern of the main river systems.[35]

The occurrence of Purussaurus and Mourasuchus in the early Middle Miocene Patajau and Kaitamana beds of the Castilletes Formation represent early records for lineages previously known from younger Laventan and Huayquerian faunas. These records expand the temporal range of high diversity gavialoid-caimanine assemblages into the early Middle Miocene. The Castilletes Formation record also expands the geographic range of Miocene endemic crocodilian faunas to latitudes equivalent to those of Central America.[36] The connections between hydrographic basins and the development of mega-wetland systems in equatorial South America allowed the long persistence of several lineages over an extensive geographical range. The extinction of gavialoids and specialized caimanines in equatorial South America was likely caused by the isolation and aridification of peripheral basins, together with the disappearance of mega-wetlands.[37]

The sloths from the Late Pliocene Ware Formation are represented by 12 specimens that belong to 5 taxa from the 4 families of ground sloths. Their body sizes span over two orders of magnitude, and they most likely featured various feeding strategies, documenting a highly diverse assemblage of sloths from the Neotropics. Although geographically close to the Isthmus of Panama, and temporally preceding the first phase of the Great American Biotic Interchange by only 200,000 to 400,000 years, the sloths for which unambiguous affinities were recovered are not closely related to the early immigrants found in North America before the first main pulse of the Great American Biotic interchange.[38] The registered giant capybara Hydrochoeropsis wayuu is the northernmost South American Pliocene hydrochoerine record and the nearest to the Panamanian bridge. The presence of this hydrochoerine, together with the fluvio-deltaic environment of the Ware Formation, suggests that during the Late Pliocene, the environment that dominated the Guajira Peninsula was more humid and with permanent water bodies, in contrast with its modern desert habitats.[39]

Fossil content

Formation Group Fossils Notes
style="background-color: Шаблон:Period color;" rowspan=13 | Ware Formation Mammals Camelidae, Glyptodontidae, Pampatheriidae, Proterotheriidae, Toxodontidae, Caviidae, Erethizontidae Шаблон:Center
Tardigrada gen. et sp. indet. Шаблон:Center
Mylodontidae gen. et sp. indet. Шаблон:Center
Lestodontini gen. et sp. nov. Шаблон:Center
Scelidotheriinae gen. et sp. indet., ?Hyperleptus sp. Шаблон:Center
Megalonychidae gen. et sp. nov. Шаблон:Center
Pliomegatherium lelongi Шаблон:Center
Nothrotherium sp. Шаблон:Center
Chapalmalania sp. Шаблон:Center
Hydrochoeropsis wayuu Шаблон:Center
Reptiles Crocodylus sp., Crocodylidae indet., Alligatoridae, Podocnemididae Шаблон:Center
Fish Characidae, Cynodontidae, Serrasalmidae, Cichlidae, Sciaenidae, Doradidae, Pimelodidae, Carcharhinidae, Sphyrnidae, Myliobatidae, Pristidae Шаблон:Center
Invertebrates Argopecten sp., Euvola sp., Nodipecten sp., Crassostrea sp., Plicatula sp., Spondylus sp., Anodontia sp., Codakia sp., Bulla sp., Laevicardium sp., Trachycardium sp., Macrocallista sp. Шаблон:Center
style="background-color: Шаблон:Period color;" rowspan=17 | Castilletes Formation Mammals Hilarcotherium miyou, Lycopsis padillai, Neodolodus cf. colombianus, Astrapotheriidae, Odontoceti, Mysticeti, Glyptodontidae, Pampatheriidae, Macraucheniidae, Proterotheriidae, Leontinidae, Toxodontidae, Interatheriidae, Megatheriidae, Dinomyidae, Sirenia, Sparassodonta Шаблон:Center
Crocodiles Gavialoidea gen. et sp. indet. Шаблон:Center
Alligatoridae gen. et sp. indet. Шаблон:Center
cf. Purussaurus sp. Шаблон:Center
cf. Mourasuchus sp. Шаблон:Center
Crocodylidae gen et sp. indet. Шаблон:Center
cf. Crocodylus sp. Шаблон:Center
Eusuchia incertae sedis Шаблон:Center
cf. Eusuchia gen et sp. indet. Шаблон:Center
Turtles Podocnemididae incertae sedis Шаблон:Center
Chelus colombiana Шаблон:Center
Chelus sp. Шаблон:Center
Chelonoidis sp. Шаблон:Center
Squamata Boidae Шаблон:Center
Birds Aves indet. Шаблон:Center
Fishes Characidae, Serrasalmidae, Sciaenidae, Sparidae, Sphyraenidae, Ariidae, Callichthyidae, Doradidae, Pimelodidae, Carcharhinidae, Hemigaleidae, Sphyrnidae, Lamnidae, Otodontidae, Dasyatidae, Myliobatidae, Rhinopteridae, Ginglymostomatidae, Pristiophoridae, Pristidae, Rhynchobatidae, Rhynobatidae, Lepidosirenidae Шаблон:Center
Invertebrates Calliostoma sp., Arene sp., Nerita cf. fulgurans, Neritina n. sp. aff. woodwadi, Modulus tamanensis, Turritella (Bactrospira) sp. cf. altilira, Turritella (Turritella) cocoditana, Turritella (Turritella) machapoorensis, Turritella (Turritella) matarucana, Architectonica (Architectonica) nobilis, Bittium sp., Rhinoclavis (Ochetoclava) venada, Potamides suprasulcatus, Terebralia dentilabris, Petaloconchus sculpturatus, Bostrycapulus sp., Crepidula cantaurana, Crepidula insculpta, Crepidula plana, Calyptraea sp. cf. centralis, Crucibulum (Dispotaea) sp. cf. springvaleense, Aylacostoma n. sp., Doryssa n. sp., Sheppardiconcha n. sp., Charadreon n. sp., Natica sp., Naticarius sp., Glossaulax paraguanensis, Polinices sp. cf. nelsoni, Sinum gabbi, Stigmaulax sp., Strombus sp., Malea sp., Bursa rugosa, Ficus sp. cf. carbasea, Distorsio sp., Chicoreus (Triplex) sp. cf. cornurectus, Chicoreus (Triplex) corrigendum, Luria sp., Muracypraea sp. cf. hyaena, Calotrophon sp. cf. gatunensis, Cymia cocoditana, Eupleura kugleri, Hesperisternia sp., Phyllonotus n. sp., Siphonochelus (Laevityphis) cf. sawkinsi, Siratus cf. denegatus, Vokesimurex sp. cf. gilli, Antillophos sp. cf. gatunensis, Cymatophos cocoditana, Cymatophos paraguanensis, Gordanops sp. cf. baranoanus, Pallacera maracaibensis, Solenosteira sp., Granolaria sp. cf. gorgasiana, Latirus sp., Nassarius sp., Turbinella falconensis, Melongena consors, Anachis sp., Sincola sp., Strombina sp., Persicula venezuelana, Prunum quirosense, Agaronia sp. aff. testacea, Oliva sp., Aphera sp., Bivetiella sp. cf. gabbiana, Euclia sp. cf. dinota, Euclia werenfelsi, Narona sp., Trigonostoma woodringi, Conus sp. aff. jaspideus, Agladrillia sp., Crassispira conica, Fusiturricula sp., Gemmula vaningeni, Glyphostoma dentiferum, Paraborsonia cantaurana, "Chiton" sp., Saccella gnomon, Noetia dauleana, Bulla sp., Crenella sp., Brachidontes sp., Atrina sp., Argopecten sp., Anadara (Rasia) democraciana, Anadara (Rasia) tirantensis, Conus sp. cf. chipolanus, Conus sp. cf. molis, Conus talis, Strioterebrum ulloa, Terebra (Paraterebra) sulcifera, Clathrodrillia sp., Cruziturricula sp., Hindsiclava henekeni, Knefastia sp., Polystira sp., Adrana sp., Politoleda forcati, Anadara (Cunearca) zuliana, Anadara (Grandiarca) chiriquiensis, Anadara (Potiarca) inutilis, Anadara (Rasia) sp. cf. cornellana, Anadara (Tosarca) sp. cf. veatchi, Tucetona sp. cf. democraciana, Mytilus sp. cf. canoasensis, Anomia peruviana, Cavilinga sp., Lucinisca mirandana, Diplodonta sp., Harvella elegans, Mulinia sp., Raeta sp., Angulus sp., ?Macoma sp., Strigilla sp., Leopecten sp., Lindapecten buchivacoanus, Crassostrea sp., Dendostrea democraciana, Plicatula sp., Anodontia sp., Lucina sp. cf. pensylvanica, Phacoides sp. cf. pectinatus, Glyptoactis paraguanensis, Arcinella yaquensis, Chama berjadinensis, Dallocardia sp. cf. sanctidavidis, Apiocardia n. sp. aff. aminensis, Crassinella sp., Eucrassatella (Hybolophus) venezuelana, Micromactra maracaibensis, Eurytellina paraguanensis, Psammacoma falconensis, Psammotreta hadra, Donax sp., Tagelus (Mesopleura) n. sp. aff. divisus, Solecurtus sp., Solena sp., Abra sp., Agriopoma (Pitarella) paraguanensis, Hysteroconcha sp., Leukoma sp., Pitar sp., Transennella sp., Tenuicorbula n. sp. aff. lupina, Semele sp., Chione sp., Chionopsis paraguanensis, Clementia dariena, Cyclinella venezuelana, Dosinia sp., Lamelliconcha labreana, Lirophora quirosensis, Macrocallista n. sp. aff. maculata, Panchione n. sp. aff. macrtropsis, Caryocorbula fortis, Caryocorbula quirosana, Hexacorbula cruziana, Dentalium sp., Balanidae indet., Buccinidae indet., Callianassidae indet., Pectinidae indet., Portunidae indet., Ranellidae indet., Sphaeriidae indet., Sportellidae indet., Tellinidae indet., Turridae indet., Unioidae indet., Veneridae indet. Шаблон:Center
style="background-color: Шаблон:Period color;" rowspan=3 | Jimol Formation Reptiles Crocodylidae, Gavialidae Шаблон:Center
Fishes Dalatiidae, Myliobatidae, Lamnidae, Hemigaleidae, Carcharhinidae Шаблон:Center
Invertebrates Calliostoma sp., Turbo sp., Modulus tamanensis, Turritella (Bactrospira) sp. cf. altilira, Turritella (Turritella) cocoditana, Turritella (Turritella) machapoorensis, Turritella (Turritella) matarucana, Architectonica (Architectonica) nobilis, Rhinoclavis (Ochetoclava) venada, Potamides suprasulcatus, Terebralia dentilabris, Petaloconchus sculpturatus, Cirsotrema undulatum, Crepidula cantaurana, Crepidula insculpta, Crepidula plana, Calyptraea sp. cf. centralis, Crucibulum (Dispotaea) sp. cf. springvaleense, Trochita trochiformis, Charadreon n. sp., Natica sp., Naticarius sp., Glossaulax paraguanensis, Polinices sp. cf. nelsoni, Sinum gabbi, Stigmaulax sp., Pachycrommium sp., Orthaulax sp., Strombus sp., Ficus sp. cf. carbasea, Luria sp., Muracypraea sp. cf. hyaena, Calotrophon sp. cf. gatunensis, Cymia cocoditana, Eupleura kugleri, Siphonochelus (Laevityphis) cf. sawkinsi, Siratus cf. denegatus, Vokesimurex sp. cf. gilli, Antillophos sp. cf. gatunensis, Cymatophos cocoditana, Cymatophos paraguanensis, Vasum quirosense, Solenosteira sp., Latirus sp., Turbinella falconensis, Melongena consors, Anachis sp., Strombina sp., Persicula venezuelana, Prunum quirosense, Conomitra sp., Eburna sp., Oliva sp., Olivella sp., Bivetiella sp. cf. gabbiana, Euclia werenfelsi, Saccella gracillima, Glycymeris sp., Amusium aguaclarense, Conus sp. cf. chipolanus, Conus sp. cf. molis, Conus talis, Strioterebrum ulloa, Terebra (Paraterebra) sulcifera, Clathrodrillia sp., Cruziturricula sp., Hindsiclava henekeni, Knefastia sp., Polystira sp., Adrana sp., Politoleda forcati, Anadara (Cunearca) zuliana, Anadara (Grandiarca) chiriquiensis, Anadara (Potiarca) inutilis, Anadara (Rasia) sp. cf. cornellana, Anadara (Tosarca) sp. cf. veatchi, Tucetona sp. cf. democraciana, Mytilus sp. cf. canoasensis, Paraleptopecten quirosensis, Hyotissa sp., Spondylus sp., Pseudochama quirosana, Trachycardium sp., Leopecten sp., Lindapecten buchivacoanus, Crassostrea sp., Dendostrea democraciana, Plicatula sp., Anodontia sp., Lucina sp. cf. pensylvanica, Phacoides sp. cf. pectinatus, Glyptoactis paraguanensis, Arcinella yaquensis, Chama berjadinensis, Dallocardia sp. cf. sanctidavidis, Apiocardia n. sp. aff. aminensis, Crassinella sp., Eucrassatella (Hybolophus) venezuelana, Micromactra maracaibensis, Eurytellina paraguanensis, Psammacoma falconensis, Psammotreta hadra, Donax sp., Tagelus (Mesopleura) n. sp. aff. divisus, Solecurtus sp., Solena sp., Abra sp., Anomalocardia sp., Globivenus palmeri, Semele sp., Chione sp., Chionopsis paraguanensis, Clementia dariena, Cyclinella venezuelana, Dosinia sp., Lamelliconcha labreana, Lirophora quirosensis, Macrocallista n. sp. aff. maculata, Panchione n. sp. aff. macrtropsis, Caryocorbula fortis, Caryocorbula quirosana, Hexacorbula cruziana, Dentalium sp., Balanidae indet., Callianassidae indet., Cidaroida indet., Echinoida indet., Turridae indet., Veneridae indet. Шаблон:Center
style="background-color: Шаблон:Period color;" rowspan=2 | Uitpa Formation Fishes Heptranchias cf. howellii, Centrophorus sp., Dalatias cf. licha, Pristiophorus sp., Isurus cf. oxyrinchus, Carcharocles sp., Alopias cf. superciliosus, Hemipristis serra, Carcharhinus gibbesii, Sphyrna laevissima, Mobula sp., Lamniformes indet., Teleostei indet. Шаблон:Center
Invertebrates Turritella sp., Xenophora sp., Architectonica nobilis, Glossaulax sp., Orthaulax sp., Gorgasina sp., Adrana sp., Saccella sp., Limopsis sp., Mimachlamys canalis, Cyclopecten sp., Propeamussium sp., Ostrea sp., Pteria sp., Lucinoma sp., Psammacoma sp., Chionopsis sp., Antalis sp., Fissidentalium sp., Turridae indet. Шаблон:Center
style="background-color: Шаблон:Period color;" | Siamaná Formation Invertebrates Mimachlamys canalis, Ostrea sp. Шаблон:Center
style="background-color: Шаблон:Period color;" | Macarao Formation Invertebrates Glyptoactis carmenensis, Ostrea aff. restinensis, Turritella chira, Venericardia (Venericor) guajirensis, Cardium spp., Membranipora sp., Nucleolites (Cassidulus) sp., Ogivalina sp., Pitar (Lamelliconcha) sp., Robulus sp., ?Stamenocella sp., Textularia sp. Шаблон:Center

See also

Шаблон:Portal

Шаблон:Clearboth

References

Шаблон:Reflist

Bibliography

Maps

Further reading

Шаблон:Sedimentary basins of Colombia

  1. Area Calculator Google Maps
  2. Hernández Pardo et al., 2009, p.65
  3. 3,0 3,1 3,2 3,3 Moreno et al., 2015, p.6
  4. Hernández Pardo et al., 2009, p.66
  5. Afanador, 2009, p.38
  6. Rodríguez & Londoño, 2002, p.177
  7. Carrillo Briceño et al., 2016, p.78
  8. 8,0 8,1 Hendy et al., 2015, p.47
  9. Climate Data Uribia
  10. Шаблон:In lang Alta Guajira, dos años sin lluvia - El Espectador
  11. Plancha 3, 2008
  12. Plancha 5, 2008
  13. Plancha 10, 2008
  14. Plancha 10bis, 2008
  15. Moreno et al., 2015, p.7
  16. South American Land Mammal Ages at Fossilworks.org
  17. Moreno et al., 2015, p.23
  18. Moreno et al., 2015, p.27
  19. Moreno et al., 2015, p.31
  20. Moreno et al., 2015, p.32
  21. Moreno et al., 2015, p.33
  22. Moreno et al., 2015, p.34
  23. 23,0 23,1 Hernández Pardo et al., 2009, p.62
  24. Wing et al., 2009, p.18629
  25. 25,0 25,1 25,2 Hernández Pardo et al., 2009, p.60
  26. Hernández Pardo et al., 2009, p.48
  27. Hernández Pardo et al., 2009, p.23
  28. Hernández Pardo et al., 2009, p.50
  29. De Porta, 2003, p.191
  30. Hernández Pardo et al., 2009, p.69
  31. Hernández Pardo et al., 2009, p.122
  32. Hernández Pardo et al., 2009, p.28
  33. Hendy et al., 2015, p.72
  34. Carrillo Briceño et al., 2016, p.92
  35. Cadena & Jaramillo, 2015, p.199
  36. Moreno Bernal, 2014, p.41
  37. Moreno Bernal, 2014, p.42
  38. Amson et al., 2016, p.16
  39. Ошибка цитирования Неверный тег <ref>; для сносок Perez не указан текст