Английская Википедия:Columbus (ISS module)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Use British English Шаблон:Italic title

Файл:Columbus module - cropped.jpg
The Columbus Module on the International Space Station
Файл:Interior Columbus module.jpg
Hans Schlegel working on outfitting Columbus
Файл:An artist's concept showing the International Space Station-RapidScat instrument against the station..jpg
One instrument mounted on Columbus was ISS-RapidScat, and this graphic shows the location of Columbus and where that instrument was mounted on the Module. The instrument was installed in 2014 and operated until 2016.

Columbus is a science laboratory that is part of the International Space Station (ISS) and is the largest single contribution to the ISS made by the European Space Agency (ESA).

Like the Harmony and Tranquility modules, the Columbus laboratory was constructed in Turin, Italy by Thales Alenia Space. The functional equipment and software of the lab was designed by EADS in Bremen, Germany. It was also integrated in Bremen before being flown to the Kennedy Space Center (KSC) in Florida in an Airbus Beluga. It was launched aboard Шаблон:OV on February 7, 2008, on flight STS-122. It is designed for ten years of operation. The module is controlled by the Columbus Control Centre, located at the German Space Operations Center, part of the German Aerospace Center in Oberpfaffenhofen near Munich, Germany.

The European Space Agency has spent 1.4 billion (about US$2 billion) on building Columbus, including the experiments it carries and the ground control infrastructure necessary to operate them.[1]

History

Шаблон:Main

Файл:Columbus logo.svg
The Columbus logo
Файл:Columbus beluga.jpg
Loading of Columbus at the Bremen airport into an Airbus Beluga
Файл:ISS 1E Configuration.jpg
ColumbusШаблон:'s position on the ISS

The structure used for Columbus is based on the MPLM module built for NASA by Thales Alenia Space. In 2000 the pre-integrated module (structure including harness and tubing) was delivered to Bremen in Germany by the Co-prime contractor Alenia. The final integration and system testing was performed by the overall prime contractor EADS Astrium Space Transportation, after that the initial Payload was integrated and the overall complement checked-out.[2]

On May 27, 2006 Columbus was flown from Bremen, Germany to Kennedy Space Center on board an Airbus Beluga.

The final schedule was much longer than originally planned due to development problems (several caused by the complex responsibility splitting between the Co-prime and the Overall prime contractor) and design changes introduced by ESA but being affordable due to the Shuttle problems delaying the Columbus launch for several years. The main design change was the addition of the External Payload Facility (EPF), which was driven by the different European Payload organizations being more interested in outer space than internal experiments. Also the addition of a terminal for direct communications to/from ground, which could have been used also as back-up for the ISS system, was studied but not implemented for cost reasons.Шаблон:Citation needed

Construction

ESA chose EADS Astrium Space Transportation as prime contractor for Columbus overall design, verification and integration. The Columbus structure, the micro-meteorite protection system, the active and passive thermal control, the environmental control, the harness and all the related ground support equipment were designed and qualified by Alcatel Alenia Space in Turin, Italy as defined by the PICA – Principle (for definition see History below); the related hardware was pre-integrated and sent as PICA in September 2001 to Bremen. The lab was built and qualified on system level at the EADS Astrium Space Transportation facilities in Bremen, Germany, from where it was sent to NASA.[3]

Launch, berthing and outfitting

Файл:STS-122 Columbus Loading.jpg
Columbus installed in AtlantisШаблон:'s payload bay in preparation for launch
Файл:STS-122 docked Columbus.jpg
Columbus docked to the starboard side of Harmony

In November 2007, Columbus was moved out of the KSC Space Station Processing Facility, and installed into the payload bay of the Atlantis orbiter for launch on ISS assembly flight 1E (STS-122).[4][5]

STS-122 launch delays

During cryo-filling of the Space Shuttle External Tank (ET) with liquid hydrogen and liquid oxygen prior to the first launch attempt on December 6, 2007, two of four LH2 ECO sensors failed a test. Mission rules called for at least three of the four sensors to be in working order for a launch attempt to proceed. As a result of the failure, the Launch Director Doug Lyons postponed the launch, initially for 24 hours. This was later revised into a 72-hour delay, resulting in a next launch attempt set for Sunday December 9, 2007. This launch attempt was scrubbed when one of the ECO sensors again failed during fuelling.

The ECO sensors' external connector was changed on the Space Shuttle external tank, causing a two-month delay in the launch. Columbus was finally launched successfully on the third attempt at 2:45pm EST, February 7, 2008.[6]

Berthing

Once at the station, Canadarm2 removed Columbus from the docked shuttle's cargo bay and attached it to the starboard hatch of Harmony (also known as Node 2), with the cylinder pointing outwards on February 11, 2008.[7]

Description

The laboratory is a cylindrical module, made from stainless steel, kevlar and hardened aluminum, with two end cones. It is Шаблон:Convert in external diameter and Шаблон:Convert in overall length, excluding the projecting external experiment racks. Its shape is very similar to that of the Multi-Purpose Logistics Modules (MPLMs), since both were designed to fit in the cargo bay of a Space Shuttle orbiter. The starboard end cone contains most of the laboratory's on-board computers. The port end cone contains the Common Berthing Mechanism.

Specifications

Файл:STS-134 EVA4 view to the Space Shuttle Endeavour.jpg
Columbus module (right) pictured with the Space Shuttle Endeavour in May 2011

Research activities and payloads

Шаблон:See also Activities in the lab are controlled on the ground by the Columbus Control Center (at DLR Oberpfaffenhofen in Germany) and by the associated User Support Operations Centres throughout Europe.

The laboratory can accommodate ten active International Standard Payload Racks (ISPRs) for science payloads. Agreements with NASA allocate to ESA 51% usage of the Columbus Laboratory.[10] ESA is thus allocated five active rack locations, with the other five being allocated to NASA. Four active rack locations are on the forward side of the deck, four on the aft side, and two are in overhead locations. Three of the deck racks are filled with life support and cooling systems. The remaining deck rack and the two remaining overhead racks are storage racks.

In addition, four un-pressurized payload platforms can be attached outside the starboard cone, on the Columbus External Payload Facility (CEPF).[11] Each external payload is mounted on an adaptor able to accommodate small instruments and experiments totalling up to Шаблон:Convert.[12]

Файл:Columbus exposed facilities on LCC-lite carrier.jpg
External payloads SOLAR and EuTEF installed on LCC-lite cargo carrier prior to launch on shuttle mission STS-122

The following European ISPRs have been initially installed inside Columbus:

The first external payloads were mounted on Columbus by crew members of the mission STS-122 mission. The three payloads mounted are:

Planned additional external payloads:

In 2014 the ISS-RapidScat instrument was installed, which was operated until late 2016.[16] ISS-RapidScat was transported to ISS by the SpaceX CRS-4 spaceflight.[16]

See also

References

Шаблон:Reflist

External links

Шаблон:Commons category

Шаблон:ISS modules Шаблон:European human spaceflight Шаблон:European Space Agency Шаблон:Orbital launches in 2008 Шаблон:Space stations Шаблон:Authority control