Английская Википедия:Conical spiral

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:Spiral-cone-arch-s.svg
Conical spiral with an archimedean spiral as floor projection
Файл:Spiral-cone-ferm-s.svg
Floor projection: Fermat's spiral
Файл:Spiral-cone-log.svg
Floor projection: logarithmic spiral
Файл:Spiral-con-hyperb.svg
Floor projection: hyperbolic spiral

In mathematics, a conical spiral, also known as a conical helix,[1] is a space curve on a right circular cone, whose floor projection is a plane spiral. If the floor projection is a logarithmic spiral, it is called conchospiral (from conch).

Parametric representation

In the <math>x</math>-<math>y</math>-plane a spiral with parametric representation

<math>x=r(\varphi)\cos\varphi \ ,\qquad y=r(\varphi)\sin\varphi</math>

a third coordinate <math>z(\varphi)</math> can be added such that the space curve lies on the cone with equation <math>\;m^2(x^2+y^2)=(z-z_0)^2\ ,\ m>0\;</math> :

  • <math>x=r(\varphi)\cos\varphi \ ,\qquad y=r(\varphi)\sin\varphi\ , \qquad \color{red}{z=z_0 + mr(\varphi)} \ .</math>

Such curves are called conical spirals.[2] They were known to Pappos.

Parameter <math> m </math> is the slope of the cone's lines with respect to the <math>x</math>-<math>y</math>-plane.

A conical spiral can instead be seen as the orthogonal projection of the floor plan spiral onto the cone.

Examples

1) Starting with an archimedean spiral <math>\;r(\varphi)=a\varphi\;</math> gives the conical spiral (see diagram)
<math>x=a\varphi\cos\varphi \ ,\qquad y=a\varphi\sin\varphi\ , \qquad z=z_0 + ma\varphi \ ,\quad \varphi \ge 0 \ .</math>
In this case the conical spiral can be seen as the intersection curve of the cone with a helicoid.
2) The second diagram shows a conical spiral with a Fermat's spiral <math>\;r(\varphi)=\pm a\sqrt{\varphi}\;</math> as floor plan.
3) The third example has a logarithmic spiral <math>\; r(\varphi)=a e^{k\varphi} \; </math> as floor plan. Its special feature is its constant slope (see below).
Introducing the abbreviation <math>K=e^k</math>gives the description: <math>r(\varphi)=aK^\varphi</math>.
4) Example 4 is based on a hyperbolic spiral <math>\; r(\varphi)=a/\varphi\; </math>. Such a spiral has an asymptote (black line), which is the floor plan of a hyperbola (purple). The conical spiral approaches the hyperbola for <math> \varphi \to 0</math>.

Properties

The following investigation deals with conical spirals of the form <math>r=a\varphi^n</math> and <math>r=ae^{k\varphi}</math>, respectively.

Slope

Файл:Spiral-cone-slope.svg
Slope angle at a point of a conical spiral

The slope at a point of a conical spiral is the slope of this point's tangent with respect to the <math>x</math>-<math>y</math>-plane. The corresponding angle is its slope angle (see diagram):

<math>\tan \beta = \frac{z'}{\sqrt{(x')^2+(y')^2}}=\frac{mr'}{\sqrt{(r')^2+r^2}}\ .</math>

A spiral with <math>r=a\varphi^n</math> gives:

  • <math>\tan\beta=\frac{mn}{\sqrt{n^2+\varphi^2}}\ .</math>

For an archimedean spiral is <math>n=1</math> and hence its slope is<math>\ \tan\beta=\tfrac{m}{\sqrt{1+\varphi^2}}\ .</math>

  • For a logarithmic spiral with <math>r=ae^{k\varphi}</math> the slope is <math>\ \tan\beta= \tfrac{mk}{\sqrt{1+k^2}}\ </math> (<math>\color{red}{\text{ constant!}}</math> ).

Because of this property a conchospiral is called an equiangular conical spiral.

Arclength

The length of an arc of a conical spiral can be determined by

<math>L=\int_{\varphi_1}^{\varphi_2}\sqrt{(x')^2+(y')^2+(z')^2}\,\mathrm{d}\varphi

= \int_{\varphi_1}^{\varphi_2}\sqrt{(1+m^2)(r')^2+r^2}\,\mathrm{d}\varphi \ .</math>

For an archimedean spiral the integral can be solved with help of a table of integrals, analogously to the planar case:

<math>L= \frac{a}{2} \left[\varphi\sqrt{(1+m^2) + \varphi^2} + (1+m^2)\ln \left(\varphi + \sqrt{(1+m^2) + \varphi^2}\right)\right ]_{\varphi_1}^{\varphi_2}\ .</math>

For a logarithmic spiral the integral can be solved easily:

<math>L=\frac{\sqrt{(1+m^2)k^2+1}}{k}(r\big(\varphi_2)-r(\varphi_1)\big)\ .</math>

In other cases elliptical integrals occur.

Development

Файл:Kegel-spirale-abw-12.svg
Development(green) of a conical spiral (red), right: a side view. The plane containing the development is designed by <math>\pi</math>. Initially the cone and the plane touch at the purple line.

For the development of a conical spiral[3] the distance <math>\rho(\varphi)</math> of a curve point <math>(x,y,z)</math> to the cone's apex <math>(0,0,z_0)</math> and the relation between the angle <math>\varphi</math> and the corresponding angle <math>\psi</math> of the development have to be determined:

<math>\rho=\sqrt{x^2+y^2+(z-z_0)^2}=\sqrt{1+m^2}\;r \ ,</math>
<math>\varphi= \sqrt{1+m^2}\psi \ .</math>

Hence the polar representation of the developed conical spiral is:

  • <math>\rho(\psi)=\sqrt{1+m^2}\; r(\sqrt{1+m^2}\psi)</math>

In case of <math>r=a\varphi^n</math> the polar representation of the developed curve is

<math>\rho=a\sqrt{1+m^2}^{\,n+1}\psi^n,</math>

which describes a spiral of the same type.

  • If the floor plan of a conical spiral is an archimedean spiral than its development is an archimedean spiral.
In case of a hyperbolic spiral (<math>n=-1</math>) the development is congruent to the floor plan spiral.

In case of a logarithmic spiral <math>r=ae^{k\varphi}</math> the development is a logarithmic spiral:

<math>\rho=a\sqrt{1+m^2}\;e^{k\sqrt{1+m^2}\psi}\ .</math>

Tangent trace

Файл:Spiral-con-hyperb-ts-12.svg
The trace (purple) of the tangents of a conical spiral with a hyperbolic spiral as floor plan. The black line is the asymptote of the hyperbolic spiral.

The collection of intersection points of the tangents of a conical spiral with the <math>x</math>-<math>y</math>-plane (plane through the cone's apex) is called its tangent trace.

For the conical spiral

<math>(r\cos\varphi, r\sin\varphi,mr)</math>

the tangent vector is

<math>(r'\cos\varphi-r\sin\varphi,r'\sin\varphi+r\cos\varphi,mr')^T</math>

and the tangent:

<math>x(t)=r\cos\varphi+t(r'\cos\varphi-r\sin\varphi)\ ,</math>
<math>y(t)=r\sin\varphi +t(r'\sin\varphi+r\cos\varphi)\ ,</math>
<math>z(t)=mr+tmr'\ .</math>

The intersection point with the <math>x</math>-<math>y</math>-plane has parameter <math>t=-r/r'</math> and the intersection point is

  • <math> \left( \frac{r^2}{r'}\sin\varphi, -\frac{r^2}{r'}\cos\varphi,0 \right)\ .</math>

<math>r=a\varphi^n</math> gives <math>\ \tfrac{r^2}{r'}=\tfrac{a}{n}\varphi^{n+1}\ </math> and the tangent trace is a spiral. In the case <math>n=-1</math> (hyperbolic spiral) the tangent trace degenerates to a circle with radius <math>a</math> (see diagram). For <math> r=a e^{k\varphi} </math> one has <math>\ \tfrac{r^2}{r'}=\tfrac{r}{k}\ </math> and the tangent trace is a logarithmic spiral, which is congruent to the floor plan, because of the self-similarity of a logarithmic spiral.

Файл:Neptunea - links&rechts gewonden.jpg
Snail shells (Neptunea angulata left, right: Neptunea despecta

References

  1. Шаблон:Cite web
  2. Siegmund Günther, Anton Edler von Braunmühl, Heinrich Wieleitner: Geschichte der mathematik. G. J. Göschen, 1921, p. 92.
  3. Theodor Schmid: Darstellende Geometrie. Band 2, Vereinigung wissenschaftlichen Verleger, 1921, p. 229.

External links