Шаблон:Short description
In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times.[1][2][3] More generally it can be seen to be a special case of a Markov renewal process.
Motivation
CTRW was introduced by Montroll and Weiss[4] as a generalization of physical diffusion processes to effectively describe anomalous diffusion, i.e., the super- and sub-diffusive cases. An equivalent formulation of the CTRW is given by generalized master equations.[5] A connection between CTRWs and diffusion equations with fractional time derivatives has been established.[6] Similarly, time-space fractional diffusion equations can be considered as CTRWs with continuously distributed jumps or continuum approximations of CTRWs on lattices.[7]
Formulation
A simple formulation of a CTRW is to consider the stochastic process <math>X(t)</math> defined by
- <math>
X(t) = X_0 + \sum_{i=1}^{N(t)} \Delta X_i,
</math>
whose increments <math>\Delta X_i</math> are iid random variables taking values in a domain <math>\Omega</math> and <math>N(t)</math> is the number of jumps in the interval <math> (0,t)</math>. The probability for the process taking the value <math>X</math> at time <math>t</math> is then given by
- <math>
P(X,t) = \sum_{n=0}^\infty P(n,t) P_n(X).
</math>
Here <math>P_n(X)</math> is the probability for the process taking the value <math>X</math> after <math>n</math> jumps, and <math>P(n,t)</math> is the probability of having <math>n</math> jumps after time <math>t</math>.
Montroll–Weiss formula
We denote by <math>\tau</math> the waiting time in between two jumps of <math>N(t)</math> and by <math>\psi(\tau)</math> its distribution. The Laplace transform of <math>\psi(\tau)</math> is defined by
- <math>
\tilde{\psi}(s)=\int_0^{\infty} d\tau \, e^{-\tau s} \psi(\tau).
</math>
Similarly, the characteristic function of the jump distribution <math> f(\Delta X) </math> is given by its Fourier transform:
- <math>
\hat{f}(k)=\int_\Omega d(\Delta X) \, e^{i k\Delta X} f(\Delta X).
</math>
One can show that the Laplace–Fourier transform of the probability <math>P(X,t)</math> is given by
- <math>
\hat{\tilde{P}}(k,s) = \frac{1-\tilde{\psi}(s)}{s} \frac{1}{1-\tilde{\psi}(s)\hat{f}(k)}.
</math>
The above is called the Montroll–Weiss formula.
Examples
References
Шаблон:Reflist
Шаблон:Stochastic processes
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|