Английская Википедия:Counting problem (complexity)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:More citations needed In computational complexity theory and computability theory, a counting problem is a type of computational problem. If R is a search problem then

<math>c_R(x)=\vert\{y\mid R(x,y)\}\vert \,</math>

is the corresponding counting function and

<math>\#R=\{(x,y)\mid y\leq c_R(x)\}</math>

denotes the corresponding decision problem.

Note that cR is a search problem while #R is a decision problem, however cR can be C Cook-reduced to #R (for appropriate C) using a binary search (the reason #R is defined the way it is, rather than being the graph of cR, is to make this binary search possible).

Counting complexity class

If NX is a complexity class associated with non-deterministic machines then #X = {#R | RNX} is the set of counting problems associated with each search problem in NX. In particular, #P is the class of counting problems associated with NP search problems. Just as NP has NP-complete problems via many-one reductions, #P has complete problems via parsimonious reductions, problem transformations that preserve the number of solutions.

See also

External links

Шаблон:Comp-sci-theory-stub