Английская Википедия:Cross-polytope

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Cross-polytopes of dimension 2 to 5
A 2-dimensional cross-polytope A 3-dimensional cross-polytope
2 dimensions
square
3 dimensions
octahedron
A 4-dimensional cross-polytope A 5-dimensional cross-polytope
4 dimensions
16-cell
5 dimensions
5-orthoplex

In geometry, a cross-polytope,Шаблон:Sfn hyperoctahedron, orthoplex,[1] or cocube is a regular, convex polytope that exists in n-dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.

The vertices of a cross-polytope can be chosen as the unit vectors pointing along each co-ordinate axis – i.e. all the permutations of Шаблон:Nowrap. The cross-polytope is the convex hull of its vertices. The n-dimensional cross-polytope can also be defined as the closed unit ball (or, according to some authors, its boundary) in the 1-norm on Rn:

<math>\{x\in\mathbb R^n : \|x\|_1 \le 1\}.</math>

In 1 dimension the cross-polytope is simply the line segment [−1, +1], in 2 dimensions it is a square (or diamond) with vertices {(±1, 0), (0, ±1)}. In 3 dimensions it is an octahedron—one of the five convex regular polyhedra known as the Platonic solids. This can be generalised to higher dimensions with an n-orthoplex being constructed as a bipyramid with an (n−1)-orthoplex base.

The cross-polytope is the dual polytope of the hypercube. The 1-skeleton of an n-dimensional cross-polytope is the Turán graph T(2n, n) (also known as a cocktail party graph [2]).

4 dimensions

The 4-dimensional cross-polytope also goes by the name hexadecachoron or 16-cell. It is one of the six convex regular 4-polytopes. These 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century.

Higher dimensions

The cross-polytope family is one of three regular polytope families, labeled by Coxeter as βn, the other two being the hypercube family, labeled as γn, and the simplex family, labeled as αn. A fourth family, the infinite tessellations of hypercubes, he labeled as δn.Шаблон:Sfn

The n-dimensional cross-polytope has 2n vertices, and 2n facets ((n − 1)-dimensional components) all of which are (n − 1)-simplices. The vertex figures are all (n − 1)-cross-polytopes. The Schläfli symbol of the cross-polytope is {3,3,...,3,4}.

The dihedral angle of the n-dimensional cross-polytope is <math>\delta_n = \arccos\left(\frac{2-n}{n}\right)</math>. This gives: δ2 = arccos(0/2) = 90°, δ3 = arccos(−1/3) = 109.47°, δ4 = arccos(−2/4) = 120°, δ5 = arccos(−3/5) = 126.87°, ... δ = arccos(−1) = 180°.

The hypervolume of the n-dimensional cross-polytope is

<math>\frac{2^n}{n!}.</math>

For each pair of non-opposite vertices, there is an edge joining them. More generally, each set of k + 1 orthogonal vertices corresponds to a distinct k-dimensional component which contains them. The number of k-dimensional components (vertices, edges, faces, ..., facets) in an n-dimensional cross-polytope is thus given by (see binomial coefficient):

<math>2^{k+1}{n \choose {k+1}}</math>Шаблон:Sfn

The extended f-vector for an n-orthoplex can be computed by (1,2)n, like the coefficients of polynomial products. For example a 16-cell is (1,2)4 = (1,4,4)2 = (1,8,24,32,16).

There are many possible orthographic projections that can show the cross-polytopes as 2-dimensional graphs. Petrie polygon projections map the points into a regular 2n-gon or lower order regular polygons. A second projection takes the 2(n−1)-gon petrie polygon of the lower dimension, seen as a bipyramid, projected down the axis, with 2 vertices mapped into the center.

Cross-polytope elements
n βn
k11
Name(s)
Graph
Graph
2n-gon
Schläfli Coxeter-Dynkin
diagrams
Vertices Edges Faces Cells 4-faces 5-faces 6-faces 7-faces 8-faces 9-faces 10-faces
0 β0 Point
0-orthoplex
. ( ) Шаблон:CDD
1                    
1 β1 Line segment
1-orthoplex
Файл:Cross graph 1.svg { } Шаблон:CDD
Шаблон:CDD
2 1                  
2 β2
−111
square
2-orthoplex
Bicross
Файл:Cross graph 2.png {4}
2{ } = { }+{ }
Шаблон:CDD
Шаблон:CDD
4 4 1                
3 β3
011
octahedron
3-orthoplex
Tricross
Файл:3-orthoplex.svg {3,4}
{31,1}
3{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
6 12 8 1              
4 β4
111
16-cell
4-orthoplex
Tetracross
Файл:4-orthoplex.svg {3,3,4}
{3,31,1}
4{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
8 24 32 16 1            
5 β5
211
5-orthoplex
Pentacross
Файл:5-orthoplex.svg {33,4}
{3,3,31,1}
5{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
10 40 80 80 32 1          
6 β6
311
6-orthoplex
Hexacross
Файл:6-orthoplex.svg {34,4}
{33,31,1}
6{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
12 60 160 240 192 64 1        
7 β7
411
7-orthoplex
Heptacross
Файл:7-orthoplex.svg {35,4}
{34,31,1}
7{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
14 84 280 560 672 448 128 1      
8 β8
511
8-orthoplex
Octacross
Файл:8-orthoplex.svg {36,4}
{35,31,1}
8{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
16 112 448 1120 1792 1792 1024 256 1    
9 β9
611
9-orthoplex
Enneacross
Файл:9-orthoplex.svg {37,4}
{36,31,1}
9{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
18 144 672 2016 4032 5376 4608 2304 512 1  
10 β10
711
10-orthoplex
Decacross
Файл:10-orthoplex.svg {38,4}
{37,31,1}
10{ }
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
20 180 960 3360 8064 13440 15360 11520 5120 1024 1
...
n βn
k11
n-orthoplex
n-cross
{3n − 2,4}
{3n − 3,31,1}
n{}
Шаблон:CDD...Шаблон:CDD
Шаблон:CDD...Шаблон:CDD
Шаблон:CDD...Шаблон:CDD
2n 0-faces, ... <math>2^{k+1}{n\choose k+1}</math> k-faces ..., 2n (n−1)-faces

The vertices of an axis-aligned cross polytope are all at equal distance from each other in the Manhattan distance (L1 norm). Kusner's conjecture states that this set of 2d points is the largest possible equidistant set for this distance.[3]

Generalized orthoplex

Regular complex polytopes can be defined in complex Hilbert space called generalized orthoplexes (or cross polytopes), βШаблон:Supsub = 2{3}2{3}...2{4}p, or Шаблон:CDD..Шаблон:CDD. Real solutions exist with p = 2, i.e. βШаблон:Supsub = βn = 2{3}2{3}...2{4}2 = {3,3,..,4}. For p > 2, they exist in <math>\mathbb{\Complex}^n</math>. A p-generalized n-orthoplex has pn vertices. Generalized orthoplexes have regular simplexes (real) as facets.[4] Generalized orthoplexes make complete multipartite graphs, βШаблон:Supsub make Kp,p for complete bipartite graph, βШаблон:Supsub make Kp,p,p for complete tripartite graphs. βШаблон:Supsub creates Kpn. An orthogonal projection can be defined that maps all the vertices equally-spaced on a circle, with all pairs of vertices connected, except multiples of n. The regular polygon perimeter in these orthogonal projections is called a petrie polygon.

Generalized orthoplexes
p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
<math>\mathbb{R}^2</math> Файл:Complex bipartite graph square.svg
2{4}2 = {4} = Шаблон:CDD
K2,2
<math>\mathbb{\Complex}^2</math> Файл:Complex polygon 2-4-3-bipartite graph.png
2{4}3 = Шаблон:CDD
K3,3
Файл:Complex polygon 2-4-4 bipartite graph.png
2{4}4 = Шаблон:CDD
K4,4
Файл:Complex polygon 2-4-5-bipartite graph.png
2{4}5 = Шаблон:CDD
K5,5
Файл:6-generalized-2-orthoplex.svg
2{4}6 = Шаблон:CDD
K6,6
Файл:7-generalized-2-orthoplex.svg
2{4}7 = Шаблон:CDD
K7,7
Файл:8-generalized-2-orthoplex.svg
2{4}8 = Шаблон:CDD
K8,8
<math>\mathbb{R}^3</math> Файл:Complex tripartite graph octahedron.svg
2{3}2{4}2 = {3,4} = Шаблон:CDD
K2,2,2
<math>\mathbb{\Complex}^3</math> Файл:3-generalized-3-orthoplex-tripartite.svg
2{3}2{4}3 = Шаблон:CDD
K3,3,3
Файл:4-generalized-3-orthoplex.svg
2{3}2{4}4 = Шаблон:CDD
K4,4,4
Файл:5-generalized-3-orthoplex.svg
2{3}2{4}5 = Шаблон:CDD
K5,5,5
Файл:6-generalized-3-orthoplex.svg
2{3}2{4}6 = Шаблон:CDD
K6,6,6
Файл:7-generalized-3-orthoplex.svg
2{3}2{4}7 = Шаблон:CDD
K7,7,7
Файл:8-generalized-3-orthoplex.svg
2{3}2{4}8 = Шаблон:CDD
K8,8,8
<math>\mathbb{R}^4</math> Файл:Complex multipartite graph 16-cell.svg
2{3}2{3}2
{3,3,4} = Шаблон:CDD
K2,2,2,2
<math>\mathbb{\Complex}^4</math> Файл:3-generalized-4-orthoplex.svg
2{3}2{3}2{4}3
Шаблон:CDD
K3,3,3,3
Файл:4-generalized-4-orthoplex.svg
2{3}2{3}2{4}4
Шаблон:CDD
K4,4,4,4
Файл:5-generalized-4-orthoplex.svg
2{3}2{3}2{4}5
Шаблон:CDD
K5,5,5,5
Файл:6-generalized-4-orthoplex.svg
2{3}2{3}2{4}6
Шаблон:CDD
K6,6,6,6
Файл:7-generalized-4-orthoplex.svg
2{3}2{3}2{4}7
Шаблон:CDD
K7,7,7,7
Файл:8-generalized-4-orthoplex.svg
2{3}2{3}2{4}8
Шаблон:CDD
K8,8,8,8
<math>\mathbb{R}^5</math> Файл:2-generalized-5-orthoplex.svg
2{3}2{3}2{3}2{4}2
{3,3,3,4} = Шаблон:CDD
K2,2,2,2,2
<math>\mathbb{\Complex}^5</math> Файл:3-generalized-5-orthoplex.svg
2{3}2{3}2{3}2{4}3
Шаблон:CDD
K3,3,3,3,3
Файл:4-generalized-5-orthoplex.svg
2{3}2{3}2{3}2{4}4
Шаблон:CDD
K4,4,4,4,4
Файл:5-generalized-5-orthoplex.svg
2{3}2{3}2{3}2{4}5
Шаблон:CDD
K5,5,5,5,5
Файл:6-generalized-5-orthoplex.svg
2{3}2{3}2{3}2{4}6
Шаблон:CDD
K6,6,6,6,6
Файл:7-generalized-5-orthoplex.svg
2{3}2{3}2{3}2{4}7
Шаблон:CDD
K7,7,7,7,7
Файл:8-generalized-5-orthoplex.svg
2{3}2{3}2{3}2{4}8
Шаблон:CDD
K8,8,8,8,8
<math>\mathbb{R}^6</math> Файл:2-generalized-6-orthoplex.svg
2{3}2{3}2{3}2{3}2{4}2
{3,3,3,3,4} = Шаблон:CDD
K2,2,2,2,2,2
<math>\mathbb{\Complex}^6</math> Файл:3-generalized-6-orthoplex.svg
2{3}2{3}2{3}2{3}2{4}3
Шаблон:CDD
K3,3,3,3,3,3
Файл:4-generalized-6-orthoplex.svg
2{3}2{3}2{3}2{3}2{4}4
Шаблон:CDD
K4,4,4,4,4,4
Файл:5-generalized-6-orthoplex.svg
2{3}2{3}2{3}2{3}2{4}5
Шаблон:CDD
K5,5,5,5,5,5
Файл:6-generalized-6-orthoplex.svg
2{3}2{3}2{3}2{3}2{4}6
Шаблон:CDD
K6,6,6,6,6,6
Файл:7-generalized-6-orthoplex.svg
2{3}2{3}2{3}2{3}2{4}7
Шаблон:CDD
K7,7,7,7,7,7
Файл:8-generalized-6-orthoplex.svg
2{3}2{3}2{3}2{3}2{4}8
Шаблон:CDD
K8,8,8,8,8,8

Related polytope families

Cross-polytopes can be combined with their dual cubes to form compound polytopes:

See also

Citations

Шаблон:Reflist

References

  • Шаблон:Cite book
    • pp. 121-122, §7.21. see illustration Fig 7.2B
    • p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)

External links

Шаблон:Commons category

Шаблон:Dimension topics Шаблон:Polytopes