Английская Википедия:Cunninghamella elegans

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Speciesbox

Cunninghamella elegans is a species of fungus in the genus Cunninghamella found in soil.[1]

It can be grown in Sabouraud dextrose broth, a liquid medium used for cultivation of yeasts and molds from liquid which are normally sterile.

As opposed to C. bertholletiae, it is not a human pathogen,[2] with the exception of two documented patients.[3]

Description

Cunninghamella elegans is a filamentous fungus that produces purely gray colonies.[4]

Electron microscopy studies show that the conidia are covered with spines.[5]

Use as a fungal organism capable of xenobiotics metabolism

Cunninghamella elegans is able to degrade xenobiotics.[6] It has a variety of enzymes of phases I (modification enzymes acting to introduce reactive and polar groups into their substrates) and II (conjugation enzymes) of the xenobiotic metabolism, as do mammals. Cytochrome P450 monooxygenase, aryl sulfotransferase, glutathione S-transferase, UDP-glucuronosyltransferase, UDP-glucosyltransferase activities have been detected in cytosolic or microsomal fractions.[7]

Cytochrome P-450 and cytochrome P-450 reductase in C. elegans are part of the phase I enzymes. They are induced by the corticosteroid cortexolone and by phenanthrene.[8] C. elegans also possesses a lanosterol 14-alpha demethylase, another enzyme in the cytochrome P450 family.[9]

Cunninghamella elegans also possesses a glutathione S-transferase.[10]

Use as a fungal model organism of mammalian drug metabolism

Cunninghamella elegans is a microbial model of mammalian drug metabolism.[11][12][13][14] The use of this fungus could reduce the over-all need for laboratory animals.[15]

Cunninghamella elegans is able to transform the tricyclic antidepressants amitriptyline[16] and doxepin,[17] the tetracyclic antidepressant mirtazapine,[18] the muscle relaxant cyclobenzaprine,[19] the typical antipsychotic chlorpromazine as well as the antihistamine and anticholinergic methdilazine[20] and azatadine. It is also able to transform the antihistamines brompheniramine, chlorpheniramine and pheniramine.[21]

It forms a glucoside with the diuretic furosemide.[14]

The transformation of oral contraceptive mestranol by C. elegans yields two hydroxylated metabolites, 6beta-hydroxymestranol and 6beta,12beta-dihydroxymestranol.[22]

Metabolism of polycyclic aromatic hydrocarbons

The phase I cytochrome P450 enzyme systems of C. elegans has been implicated in the neutralization of numerous polycyclic aromatic hydrocarbons (PAH).[4]

It can degrade molecules such as anthracene, 7-methylbenz[a]anthracene and 7-hydroxymethylbenz[a]anthracene,[23] phenanthrene,[24] acenaphthene,[25] 1- and 2-methylnaphthalene,[26] naphthalene,[27] fluorene[28] or benzo(a)pyrene.[29]

In the case of phenanthrene, C. elegans produces a glucoside conjugate of 1-hydroxyphenanthrene (phenanthrene 1-O-beta-glucose).[30]

Metabolism of pesticides

Cunninghamella elegans is also able to degrade the herbicides alachlor,[31] metolachlor[32] and isoproturon[33] as well as the fungicide mepanipyrim.[1]

Metabolism of phenolics

Cunninghamella elegans can be used to study the metabolism of phenols. This type of molecules already have reactive and polar groups comprised within their structure therefore phases I enzymes are less active than phase II (conjugation) enzymes.

Metabolism of flavonoids

Flavonols

In flavonols, an hydroxyl group is available in the 3- position allowing the glycosylation at that position. The biotransformation of quercetin yields three metabolites, including quercetin 3-O-β-D-glucopyranoside, kaempferol 3-O-β-D-glucopyranoside and isorhamnetin 3-O-β-D-glucopyranoside. Glucosylation and O-methylation are involved in the process.[34]

Flavones

In flavones, there is no hydroxyl group available at the 3- position. Conjugation, in the form of sulfation occurs at the 7- or 4'- positions. Apigenin and chrysin are also transformed by C. elegans and produce apigenin 7-sulfate, apigenin 7,4′-disulfate, chrysin 7-sulfate.[35]
Sulfation also occurs on naringenin and produces naringenin-7-sulfate.[36]

Glucosylation may nevertheless occur but in 3'- position, as happens during the microbial transformation of psiadiarabin and its 6-desmethoxy analogue, 5,3′ dihydroxy-7,2′,4′,5′-tetramethoxyflavone, by Cunninghamella elegans NRRL 1392 that gives the 3′-glucoside conjugates of the two flavones.[37]

flavanones

As in flavones, there is no hydroxyl groups available at the 3- position for glycosylation in flavanones. Therefore, sulfation occurs at the 7- position. In compounds like 7-methoxylated flavanones like 7-O-methylnaringenin (sakuranetin), demethylation followed by sulfation occur.[38]

Metabolism of synthetic phenolics

It is also able to degrade synthetic phenolic compounds like bisphenol A.[39]

Metabolism of heterocyclic organic compounds

Cunninghamella elegans can transform the nitrogen containing compound phthalazine[40] It is also able to oxidize the organosulfur compound dibenzothiophene.[41]

Uses in biotechnology

Methods for efficient C. elegans genomic DNA isolation and transformation have been developed.[42]

The cytochrome P450 of C. elegans has been cloned in Escherichia coli[43] as well as an enolase.[44]

Use in bioconversion

Techniques employed

Cunninghamella elegans can be grown in stirred tank batch bioreactor.[45] Protoplasts cultures have been used.[46]

Examples of uses

Cunninghamella elegans can be used for phenanthrene bioconversion[45] or for steroid transformation.[46] It has been used to produce Шаблон:Chem name from 10,11-dimethoxyaporphine,[47] triptoquinone from the synthetic abietane diterpene triptophenolide[48] or for the rational and economical bioconversion of antimalarial drug artemisinin to 7beta-hydroxyartemisinin.[49]

Environmental biotechnology

Cunninghamella elegans has been used in environmental biotechnology for the treatment of textile wastewaters,[50] for instance those discoloured by azo dyes[51] or malachite green.[52]

Chitin[53] and chitosan isolated from C. elegans can be used for heavy metal biosorption.[54] Production can be made on yam bean (Pachyrhizus erosus L. Urban) medium.[55]

Strains

Cunninghamella elegans ATCC 9245[34]
Cunninghamella elegans ATCC 36112[4]
Cunninghamella elegans ATCC 26269[4]
Cunninghamella elegans NRRL 1393[4]
Cunninghamella elegans IFM 46109[54]
Cunninghamella elegans UCP 542[51]

References

Шаблон:Reflist

External links

Шаблон:Taxonbar

  1. 1,0 1,1 Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. Шаблон:Cite journal
  4. 4,0 4,1 4,2 4,3 4,4 Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Lanosterol 14-alpha demethylase from Cunninghamella elegans on www.uniprot.org
  10. Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. 14,0 14,1 Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite journal
  18. Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. Шаблон:Cite journal
  29. Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. 34,0 34,1 Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. Шаблон:Cite journal
  44. Шаблон:Cite journal
  45. 45,0 45,1 Шаблон:Cite journal
  46. 46,0 46,1 Шаблон:Cite journal (French)
  47. Шаблон:Cite journal
  48. TШаблон:Cite journal
  49. Шаблон:Cite journal
  50. Шаблон:Cite journal
  51. 51,0 51,1 Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. 54,0 54,1 Шаблон:Cite journal
  55. Шаблон:Cite journal