Английская Википедия:Cupola (geometry)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Other uses Шаблон:Infobox polyhedron

In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

A cupola can be seen as a prism where one of the polygons has been collapsed in half by merging alternate vertices.

A cupola can be given an extended Schläfli symbol Шаблон:Math representing a regular polygon Шаблон:Math joined by a parallel of its truncation, Шаблон:Math or Шаблон:Math

Cupolae are a subclass of the prismatoids.

Its dual contains a shape that is sort of a weld between half of an Шаблон:Mvar-sided trapezohedron and a Шаблон:Math-sided pyramid.

Examples

Шаблон:Cupolae

Файл:Tile 3464.svg
Plane "hexagonal cupolae" in the rhombitrihexagonal tiling

The above-mentioned three polyhedra are the only non-trivial convex cupolae with regular faces: The "hexagonal cupola" is a plane figure, and the triangular prism might be considered a "cupola" of degree 2 (the cupola of a line segment and a square). However, cupolae of higher-degree polygons may be constructed with irregular triangular and rectangular faces.

Coordinates of the vertices

Файл:Cupola 40.png
A 40-sided cupola has: Шаблон:Legend Шаблон:Legend Шаблон:Legend and a bottom regular 80-gon (hidden).

The definition of the cupola does not require the base (or the side opposite the base, which can be called the top) to be a regular polygon, but it is convenient to consider the case where the cupola has its maximal symmetry, Шаблон:Math. In that case, the top is a regular Шаблон:Mvar-gon, while the base is either a regular Шаблон:Math-gon or a Шаблон:Math-gon which has two different side lengths alternating and the same angles as a regular Шаблон:Math-gon. It is convenient to fix the coordinate system so that the base lies in the Шаблон:Mvar-plane, with the top in a plane parallel to the Шаблон:Mvar-plane. The Шаблон:Mvar-axis is the Шаблон:Mvar-fold axis, and the mirror planes pass through the Шаблон:Mvar-axis and bisect the sides of the base. They also either bisect the sides or the angles of the top polygon, or both. (If Шаблон:Mvar is even, half of the mirror planes bisect the sides of the top polygon and half bisect the angles, while if Шаблон:Mvar is odd, each mirror plane bisects one side and one angle of the top polygon.) The vertices of the base can be designated Шаблон:Tmath through Шаблон:Tmath while the vertices of the top polygon can be designated Шаблон:Tmath through Шаблон:Tmath With these conventions, the coordinates of the vertices can be written as: <math display=block>\begin{array}{rllcc}

 V_{2j-1} :& \biggl( r_b \cos\left(\frac{2\pi(j-1)}{n} + \alpha\right), & r_b \sin\left(\frac{2\pi(j-1)}{n} + \alpha\right), & 0 \biggr) \\[2pt]
V_{2j} :& \biggl( r_b \cos\left(\frac{2\pi j}{n} - \alpha\right), & r_b \sin\left(\frac{2\pi j}{n} - \alpha\right), & 0 \biggr) \\[2pt]
 V_{2n+j} :& \biggl( r_t \cos\frac{\pi j}{n}, & r_t \sin\frac{\pi j}{n}, & h \biggr)

\end{array}</math>

where Шаблон:Math.

Since the polygons Шаблон:Tmath etc. are rectangles, this puts a constraint on the values of Шаблон:Tmath The distance <math>\bigl|V_1 V_2 \bigr|</math> is equal to <math display=block>\begin{align}

 & r_b \sqrt{ \left[\cos\left(\tfrac{2\pi}{n} - \alpha\right) - \cos \alpha\right]^2 + \left[\sin\left(\tfrac{2\pi}{n} - \alpha\right) - \sin\alpha\right]^2} \\
 =\ & r_b \sqrt{ \left[\cos^2 \left(\tfrac{2\pi}{n} - \alpha\right) - 2\cos\left(\tfrac{2pi}{n} - \alpha\right)\cos\alpha + \cos^2 \alpha \right] + \left[\sin^2 \left(\tfrac{2\pi}{n} - \alpha\right) - 2\sin\left(\tfrac{2\pi}{n} - \alpha\right) \sin\alpha + \sin^2 \alpha \right] } \\
 =\ & r_b \sqrt{ 2\left[1 - \cos\left(\tfrac{2\pi}{n} - \alpha\right) \cos\alpha - \sin\left(\tfrac{2\pi}{n} - \alpha\right)\sin\alpha \right]} \\
 =\ & r_b \sqrt{ 2\left[1 - \cos\left(\tfrac{2\pi}{n} - 2\alpha\right)\right]}

\end{align}</math>

while the distance <math>\bigl| V_{2n+1}V_{2n+2} \bigr|</math> is equal to <math display=block>\begin{align}

 & r_t \sqrt{ \left[ \cos\tfrac{\pi}{n} - 1 \right]^2 + \sin^2 \tfrac{\pi}{n} } \\
 =\ & r_t \sqrt{ \left[ \cos^2\tfrac{\pi}{n} - 2\cos\tfrac{\pi}{n} + 1 \right] + \sin^2\tfrac{\pi}{n} } \\
 =\ & r_t \sqrt{2 \left[1 - \cos\tfrac{\pi}{n} \right]}

\end{align}</math>

These are to be equal, and if this common edge is denoted by Шаблон:Mvar, <math display=block>\begin{align}

 r_b &= \frac{s}{ \sqrt{2\left[1 - \cos\left(\tfrac{2\pi}{n} - 2\alpha \right) \right] }} \\[4pt]
 r_t &= \frac{s}{ \sqrt{2\left[1 - \cos\tfrac{\pi}{n} \right] }}

\end{align}</math>

These values are to be inserted into the expressions for the coordinates of the vertices given earlier.

Star-cupolae

Шаблон:Star-cupolae Шаблон:Star-cupoloids Star cupolae exist for all bases Шаблон:Math where Шаблон:Math and Шаблон:Mvar is odd. At the limits the cupolae collapse into plane figures: beyond the limits the triangles and squares can no longer span the distance between the two polygons (it can still be made if the triangles or squares are irregular.). When Шаблон:Mvar is even, the bottom base Шаблон:Math becomes degenerate: we can form a cupoloid or semicupola by withdrawing this degenerate face and instead letting the triangles and squares connect to each other here. In particular, the tetrahemihexahedron may be seen as a {3/2}-cupoloid. The cupolae are all orientable, while the cupoloids are all nonorientable. When Шаблон:Math in a cupoloid, the triangles and squares do not cover the entire base, and a small membrane is left in the base that simply covers empty space. Hence the {5/2} and {7/2} cupoloids pictured above have membranes (not filled in), while the {5/4} and {7/4} cupoloids pictured above do not.

The height Шаблон:Mvar of an Шаблон:Math-cupola or cupoloid is given by the formula <math display=block>h = \sqrt{1-\frac{1}{4 \sin^{2} \frac{\pi d}{n}}}</math> In particular, Шаблон:Math at the limits of Шаблон:Math and Шаблон:Math, and Шаблон:Mvar is maximized at Шаблон:Math (the triangular prism, where the triangles are upright).[1][2]

In the images above, the star cupolae have been given a consistent colour scheme to aid identifying their faces: the base Шаблон:Math-gon is red, the base Шаблон:Math-gon is yellow, the squares are blue, and the triangles are green. The cupoloids have the base Шаблон:Math-gon red, the squares yellow, and the triangles blue, as the other base has been withdrawn.

Anticupola

Шаблон:Infobox polyhedron

An Шаблон:Mvar-gonal anticupola is constructed from a regular Шаблон:Math-gonal base, Шаблон:Math triangles as two types, and a regular Шаблон:Mvar-gonal top. For Шаблон:Math, the top digon face is reduced to a single edge. The vertices of the top polygon are aligned with vertices in the lower polygon. The symmetry is Шаблон:Math, order Шаблон:Math.

An anticupola can't be constructed with all regular faces, Шаблон:Fact although some can be made regular. If the top Шаблон:Mvar-gon and triangles are regular, the base Шаблон:Math-gon can not be planar and regular. In such a case, Шаблон:Math generates a regular hexagon and surrounding equilateral triangles of a snub hexagonal tiling, which can be closed into a zero volume polygon with the base a symmetric 12-gon shaped like a larger hexagon, having adjacent pairs of colinear edges.

Two anticupola can be augmented together on their base as a bianticupola.

Family of convex anticupolae
Шаблон:Mvar 2 3 4 5 6...
Name Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math
Image Файл:Digonal anticupola.png
Digonal
Файл:Triangular anticupola.png
Triangular
Файл:Square anticupola.png
Square
Файл:Pentagonal anticupola.png
Pentagonal
Файл:Hexagonal anticupola.png
Hexagonal
Transparent Файл:Digonal anticupola-trans.png Файл:Triangular anticupola-trans.png Файл:Square anticupola-trans.png Файл:Pentagonal anticupola-trans.png Файл:Hexagonal anticupola-trans.png
Net Файл:Digonal anticupola net.png Файл:Triangular anticupola net.png Файл:Square anticupola net.png Файл:Pentagonal anticupola net.png Файл:Hexagonal anticupola net.png

Шаблон:-

Hypercupolae

The hypercupolae or polyhedral cupolae are a family of convex nonuniform polychora (here four-dimensional figures), analogous to the cupolas. Each one's bases are a Platonic solid and its expansion.[3]

Name Tetrahedral cupola Cubic cupola Octahedral cupola Dodecahedral cupola Hexagonal tiling cupola
Schläfli symbol Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math
Segmentochora
index[3]
K4.23 K4.71 K4.107 K4.152
circumradius <math>1</math> <math display=inline>\sqrt{\frac{3+\sqrt 2}{2}} \approx 1.485634</math> <math display=inline>\sqrt{2+\sqrt 2} \approx 1.847759</math> <math display=inline>3+\sqrt 5 \approx 5.236068</math>
Image Файл:4D Tetrahedral Cupola-perspective-cuboctahedron-first.png Файл:4D Cubic Cupola-perspective-cube-first.png Файл:4D octahedral cupola-perspective-octahedron-first.png Файл:Dodecahedral cupola.png
Cap cells Файл:Uniform polyhedron-33-t0.pngФайл:Uniform polyhedron-33-t02.png Файл:Uniform polyhedron-43-t0.pngФайл:Uniform polyhedron-43-t02.png Файл:Uniform polyhedron-43-t2.pngФайл:Uniform polyhedron-43-t02.png Файл:Uniform polyhedron-53-t0.pngФайл:Uniform polyhedron-53-t02.png Файл:Uniform tiling 63-t0.pngФайл:Uniform tiling 63-t02.png
Vertices 16 32 30 80
Edges 42 84 84 210
Faces 42 24 triangles
18 squares
80 32 triangles
48 squares
82 40 triangles
42 squares
194 80 triangles
90 squares
24 pentagons
Cells 16 1 tetrahedron
4 triangular prisms
6 triangular prisms
4 triangular pyramids
1 cuboctahedron
28  1 cube
 6 square prisms
12 triangular prisms
 8 triangular pyramids
 1 rhombicuboctahedron
28  1 octahedron
 8 triangular prisms
12 triangular prisms
 6 square pyramids
 1 rhombicuboctahedron
64  1 dodecahedron
12 pentagonal prisms
30 triangular prisms
20 triangular pyramids
 1 rhombicosidodecahedron
1 hexagonal tiling
∞ hexagonal prisms
∞ triangular prisms
∞ triangular pyramids
1 rhombitrihexagonal tiling
Related
uniform
polychora
runcinated 5-cell
Шаблон:CDD
runcinated tesseract
Шаблон:CDD
runcinated 24-cell
Шаблон:CDD
runcinated 120-cell
Шаблон:CDD
runcinated hexagonal tiling honeycomb
Шаблон:CDD

See also

References

Шаблон:Reflist

  • Johnson, N.W. Convex Polyhedra with Regular Faces. Can. J. Math. 18, 169–200, 1966.

External links

Шаблон:Polyhedron navigator

  1. Шаблон:Cite web
  2. Шаблон:Cite web
  3. 3,0 3,1 Convex Segmentochora Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000