Английская Википедия:Curie (unit)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox Unit

Файл:Cobalt-60.jpg
Sample of cobalt-60 that emits 1 μCi (microcurie) of radioactivity; i.e. 37,000 decays per second.

The curie (symbol Ci) is a non-SI unit of radioactivity originally defined in 1910. According to a notice in Nature at the time, it was to be named in honour of Pierre Curie,[1] but was considered at least by some to be in honour of Marie Skłodowska–Curie as well,[2] and is in later literature considered to be named for both.[3]

It was originally defined as "the quantity or mass of radium emanation in equilibrium with one gram of radium (element)",[1] but is currently defined as 1 Ci = Шаблон:Val decays per second[4] after more accurate measurements of the activity of 226Ra (which has a specific activity of Шаблон:Val[5]).

In 1975 the General Conference on Weights and Measures gave the becquerel (Bq), defined as one nuclear decay per second, official status as the SI unit of activity.[6] Therefore:

1 Ci = Шаблон:Val = 37 GBq

and

1 Bq ≅ Шаблон:Val ≅ 27 pCi

While its continued use is discouraged by the National Institute of Standards and Technology (NIST)[7] and other bodies, the curie is still widely used throughout government, industry and medicine in the United States and in other countries.

At the 1910 meeting, which originally defined the curie, it was proposed to make it equivalent to 10 nanograms of radium (a practical amount). But Marie Skłodowska–Curie, after initially accepting this, changed her mind and insisted on one gram of radium. According to Bertram Boltwood, Marie Skłodowska–Curie thought that "the use of the name 'curie' for so infinitesimally small [a] quantity of anything was altogether inappropriate".[2]

The power emitted in radioactive decay corresponding to one curie can be calculated by multiplying the decay energy by approximately 5.93 mW / MeV.

A radiotherapy machine may have roughly 1000 Ci of a radioisotope such as caesium-137 or cobalt-60. This quantity of radioactivity can produce serious health effects with only a few minutes of close-range, unshielded exposure.

Radioactive decay can lead to the emission of particulate radiation or electromagnetic radiation. Ingesting even small quantities of some particulate emitting radionuclides may be fatal. For example, the median lethal dose (LD-50) for ingested polonium-210 is 240 μCi; about 53.5 nanograms. However, millicurie quantities of electromagnetic emitting radionuclides are routinely used in nuclear medicine.

The typical human body contains roughly 0.1 μCi (14 mg) of naturally occurring potassium-40. A human body containing Шаблон:Cvt of carbon (see Composition of the human body) would also have about 24 nanograms or 0.1 μCi of carbon-14. Together, these would result in a total of approximately 0.2 μCi or 7400 decays per second inside the person's body (mostly from beta decay but some from gamma decay).

As a measure of quantity

Units of activity (the curie and the becquerel) also refer to a quantity of radioactive atoms. Because the probability of decay is a fixed physical quantity, for a known number of atoms of a particular radionuclide, a predictable number will decay in a given time. The number of decays that will occur in one second in one gram of atoms of a particular radionuclide is known as the specific activity of that radionuclide.

The activity of a sample decreases with time because of decay.

The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of radioactive atoms would follow the expression

N (atoms) × λ (s−1) = 1 Ci = 3.7 × 1010 Bq,

and so

N = 3.7 × 1010 Bq / λ,

where λ is the decay constant in s−1.

Here are some examples, ordered by half-life:

Isotope Half-life Mass of 1 curie Specific activity (Ci/g)
209Bi Шаблон:Val years 11.1 billion tonnes Шаблон:Val
232Th Шаблон:Val years 9.1 tonnes Шаблон:Val (110,000 pCi/g, 0.11 μCi/g)
238U Шаблон:Val years 2.977 tonnes Шаблон:Val (340,000 pCi/g, 0.34 μCi/g)
40K Шаблон:Val years 140 kg Шаблон:Val (7,100,000 pCi/g, 7.1 μCi/g)
235U Шаблон:Val years 463 kg Шаблон:Val (2,160,000 pCi/g, 2.2 μCi/g)
129I Шаблон:Val years 5.66 kg 0.00018
99Tc Шаблон:Val years 58 g 0.017
239Pu Шаблон:Val years 16 g 0.063
240Pu 6563 years 4.4 g 0.23
14C 5730 years 0.22 g 4.5
226Ra 1601 years 1.01 g 0.99
241Am 432.6 years 0.29 g 3.43
238Pu 88 years 59 mg 17
137Cs 30.17 years 12 mg 83
90Sr 28.8 years 7.2 mg 139
241Pu 14 years 9.4 mg 106
3H 12.32 years 104 μg 9,621
228Ra 5.75 years 3.67 mg 273
60Co 1925 days 883 μg 1,132
210Po 138 days 223 μg 4,484
131I 8.02 days 8 μg 125,000
123I 13 hours 518 ng 1,930,000
212Pb 10.64 hours 719 ng 1,390,000
223Fr 22 minutes 26 ng 38,000,000
212Po 299 nanoseconds 5.61 ag Шаблон:Val

Radiation related quantities

The following table shows radiation quantities in SI and non-SI units: Шаблон:Radiation related quantities

See also

References

Шаблон:Reflist

Шаблон:Scientists whose names are used as units