Английская Википедия:Cycle graph (algebra)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Other uses

In group theory, a subfield of abstract algebra, a cycle graph of a group is an undirected graph that illustrates the various cycles of that group, given a set of generators for the group. Cycle graphs are particularly useful in visualizing the structure of small finite groups.

A cycle is the set of powers of a given group element a, where an, the n-th power of an element a, is defined as the product of a multiplied by itself n times. The element a is said to generate the cycle. In a finite group, some non-zero power of a must be the group identity, which we denote either as e or 1; the lowest such power is the order of the element a, the number of distinct elements in the cycle that it generates. In a cycle graph, the cycle is represented as a polygon, with its vertices representing the group elements and its edges indicating how they are linked together to form the cycle.

Definition

Each group element is represented by a node in the cycle graph, and enough cycles are represented as polygons in the graph so that every node lies on at least one cycle. All of those polygons pass through the node representing the identity, and some other nodes may also lie on more than one cycle.

Suppose that a group element a generates a cycle of order 6 (has order 6), so that the nodes a, a2, a3, a4, a5, and a6 = e are the vertices of a hexagon in the cycle graph. The element a2 then has order 3; but making the nodes a2, a4, and e be the vertices of a triangle in the graph would add no new information. So, only the primitive cycles need be considered, those that are not subsets of another cycle. Also, the node a5, which also has order 6, generates the same cycle as does a itself; so we have at least two choices for which element to use in generating a cycle --- often more.

To build a cycle graph for a group, we start with a node for each group element. For each primitive cycle, we then choose some element a that generates that cycle, and we connect the node for e to the one for a, a to a2, ..., ak−1 to ak, etc., until returning to e. The result is a cycle graph for the group.

When a group element a has order 2 (so that multiplication by a is an involution), the rule above would connect e to a by two edges, one going out and the other coming back. Except when the intent is to emphasize the two edges of such a cycle, it is typically drawn[1] as a single line between the two elements.

Note that this correspondence between groups and graphs is not one-to-one in either direction: Two different groups can have the same cycle graph, and two different graphs can be cycle graphs for a single group. We give examples of each in the non-uniqueness section.

Example and properties

Файл:Dihedral group4 example (right).png
Dih4 kaleidoscope with red mirror and 4-fold rotational generators
Файл:Dih4 cycle graph.svg
Cycle graph for dihedral group Dih4.

As an example of a group cycle graph, consider the dihedral group Dih4. The multiplication table for this group is shown on the left, and the cycle graph is shown on the right, with e specifying the identity element.

o e b a a2 a3 ab a2b a3b
e e b a a2 a3 ab a2b a3b
b b e a3b a2b ab a3 a2 a
a a ab a2 a3 e a2b a3b b
a2 a2 a2b a3 e a a3b b ab
a3 a3 a3b e a a2 b ab a2b
ab ab a b a3b a2b e a3 a2
a2b a2b a2 ab b a3b a e a3
a3b a3b a3 a2b ab b a2 a e

Notice the cycle {e, a, a2, a3} in the multiplication table, with a4 = e. The inverse a−1 = a3 is also a generator of this cycle: (Шаблон:Nowrap, Шаблон:Nowrap, and Шаблон:Nowrap. Similarly, any cycle in any group has at least two generators, and may be traversed in either direction. More generally, the number of generators of a cycle with n elements is given by the Euler φ function of n, and any of these generators may be written as the first node in the cycle (next to the identity e); or more commonly the nodes are left unmarked. Two distinct cycles cannot intersect in a generator.

Файл:GroupDiagramQ8.svg
Cycle graph of the quaternion group Q8.

Cycles that contain a non-prime number of elements have cyclic subgroups that are not shown in the graph. For the group Dih4 above, we could draw a line between a2 and e since Шаблон:Nowrap, but since a2 is part of a larger cycle, this is not an edge of the cycle graph.

There can be ambiguity when two cycles share a non-identity element. For example, the 8-element quaternion group has cycle graph shown at right. Each of the elements in the middle row when multiplied by itself gives −1 (where 1 is the identity element). In this case we may use different colors to keep track of the cycles, although symmetry considerations will work as well.

As noted earlier, the two edges of a 2-element cycle are typically represented as a single line.

The inverse of an element is the node symmetric to it in its cycle, with respect to the reflection which fixes the identity.

Non-uniqueness

The cycle graph of a group is not uniquely determined up to graph isomorphism; nor does it uniquely determine the group up to group isomorphism. That is, the graph obtained depends on the set of generators chosen, and two different groups (with chosen sets of generators) can generate the same cycle graph.[2]

A single group can have different cycle graphs

For some groups, choosing different elements to generate the various primitive cycles of that group can lead to different cycle graphs. There is an example of this for the abelian group <math>C_5\times C_2\times C_2</math>, which has order 20.[2] We denote an element of that group as a triple of numbers <math>(i;j,k)</math>, where <math>0\le i<5</math> and each of <math>j</math> and <math>k</math> is either 0 or 1. The triple <math>(0;0,0)</math> is the identity element. In the drawings below, <math>i</math> is shown above <math>j</math> and <math>k</math>.

This group has three primitive cycles, each of order 10. In the first cycle graph, we choose, as the generators of those three cycles, the nodes <math>(1;1,0)</math>, <math>(1;0,1)</math>, and <math>(1;1,1)</math>. In the second, we generate the third of those cycles --- the blue one --- by starting instead with <math>(2;1,1)</math>.

Файл:One cycle graph for direct product of C 5, C 2, and C 2.svg
One cycle graph for the direct product of the three groups C_5, C_2, and C_2
Файл:Alternative cycle graph for direct product of C 5, C 2, and C 2.svg
An alternative cycle graph for the direct product of the three groups C_5, C_2, and C_2.

The two resulting graphs are not isomorphic because they have diameters 5 and 4 respectively.

Different groups can have the same cycle graph

Two different (non-isomorphic) groups can have cycle graphs that are isomorphic, where the latter isomorphism ignores the labels on the nodes of the graphs. It follows that the structure of a group is not uniquely determined by its cycle graph.

There is an example of this already for groups of order 16, the two groups being <math>C_8\times C_2</math> and <math>C_8\rtimes_5 C_2</math>. The abelian group <math>C_8\times C_2</math> is the direct product of the cyclic groups of orders 8 and 2. The non-abelian group <math>C_8\rtimes_5 C_2</math> is that semidirect product of <math>C_8</math> and <math>C_2</math> in which the non-identity element of <math>C_2</math> maps to the multiply-by-5 automorphism of <math>C_8</math>.

In drawing the cycle graphs of those two groups, we take <math>C_8\times C_2</math> to be generated by elements s and t with

<math> s^8=t^2=1\quad\text{and}\quad ts=st,</math>

where that latter relation makes <math>C_8\times C_2</math> abelian. And we take <math>C_8\rtimes_5 C_2</math> to be generated by elements Шаблон:Sigma and Шаблон:Tau with

<math> \sigma^8=\tau^2=1\quad\text{and}\quad \tau\sigma=\sigma^5\tau.</math>

Here are cycle graphs for those two groups, where we choose <math>st</math> to generate the green cycle on the left and <math>\sigma\tau</math> to generate that cycle on the right:

Файл:Cycle graph for direct product of C 8 and C 2.svg Файл:Cycle graph for a semidirect product of C 8 with C 2.svg

In the right-hand graph, the green cycle, after moving from 1 to <math>\sigma\tau</math>, moves next to <math>\sigma^6,</math> because

<math>(\sigma\tau)(\sigma\tau)=\sigma(\tau\sigma)\tau=\sigma(\sigma^5\tau)\tau=\sigma^6.</math>

History

Cycle graphs were investigated by the number theorist Daniel Shanks in the early 1950s as a tool to study multiplicative groups of residue classes.Шаблон:Sfn Shanks first published the idea in the 1962 first edition of his book Solved and Unsolved Problems in Number Theory.Шаблон:Sfn In the book, Shanks investigates which groups have isomorphic cycle graphs and when a cycle graph is planar.Шаблон:Sfn In the 1978 second edition, Shanks reflects on his research on class groups and the development of the baby-step giant-step method:Шаблон:Sfn Шаблон:Quotation

Cycle graphs are used as a pedagogical tool in Nathan Carter's 2009 introductory textbook Visual Group Theory.[3]

Graph characteristics of particular group families

Certain group types give typical graphs:

Cyclic groups Zn, order n, is a single cycle graphed simply as an n-sided polygon with the elements at the vertices:

Файл:GroupDiagramMiniC1.svg Файл:GroupDiagramMiniC2.svg Файл:GroupDiagramMiniC3.svg Файл:GroupDiagramMiniC4.svg Файл:GroupDiagramMiniC5.svg Файл:GroupDiagramMiniC6.svg Файл:GroupDiagramMiniC7.svg Файл:GroupDiagramMiniC8.svg
Z1 Z2 = Dih1 Z3 Z4 Z5 Z6 = Z3×Z2 Z7 Z8
Файл:GroupDiagramMiniC9.svg Файл:GroupDiagramMiniC10.svg Файл:GroupDiagramMiniC11.svg Файл:GroupDiagramMiniC12.svg Файл:GroupDiagramMiniC13.svg Файл:GroupDiagramMiniC14.svg Файл:GroupDiagramMiniC15.svg Файл:GroupDiagramMiniC16.svg
Z9 Z10 = Z5×Z2 Z11 Z12 = Z4×Z3 Z13 Z14 = Z7×Z2 Z15 = Z5×Z3 Z16
Файл:GroupDiagramMiniC17.svg Файл:GroupDiagramMiniC18.svg Файл:GroupDiagramMiniC19.svg Файл:GroupDiagramMiniC20.svg Файл:GroupDiagramMiniC21.svg Файл:GroupDiagramMiniC22.svg Файл:GroupDiagramMiniC23.svg Файл:GroupDiagramMiniC24.svg
Z17 Z18 = Z9×Z2 Z19 Z20 = Z5×Z4 Z21 = Z7×Z3 Z22 = Z11×Z2 Z23 Z24 = Z8×Z3
Файл:GroupDiagramMiniC2.svg Файл:GroupDiagramMiniD4.svg Файл:GroupDiagramMiniC2x3.svg Файл:GroupDiagramMiniC2x4.svg
Z2 Z22 = Dih2 Z23 = Dih2×Dih1 Z24 = Dih22

When n is a prime number, groups of the form (Zn)m will have Шаблон:Nowrap n-element cycles sharing the identity element:

Файл:GroupDiagramMiniD4.svg Файл:GroupDiagramMiniC2x3.svg Файл:GroupDiagramMiniC2x4.svg Файл:GroupDiagramMiniC3x2.svg
Z22 = Dih2 Z23 = Dih2×Dih1 Z24 = Dih22 Z32

Dihedral groups Dihn, order 2n consists of an n-element cycle and n 2-element cycles:

Файл:GroupDiagramMiniC2.svg Файл:GroupDiagramMiniD4.svg Файл:GroupDiagramMiniD6.svg Файл:GroupDiagramMiniD8.svg Файл:GroupDiagramMiniD10.svg Файл:GroupDiagramMiniD12.svg Файл:GroupDiagramMiniD14.svg Файл:GroupDiagramMiniD16.svg Файл:GroupDiagramMiniD18.png Файл:GroupDiagramMiniD20.png
Dih1 = Z2 Dih2 = Z22 Dih3 = S3 Dih4 Dih5 Dih6 = Dih3×Z2 Dih7 Dih8 Dih9 Dih10 = Dih5×Z2

Dicyclic groups, Dicn = Q4n, order 4n:

Файл:GroupDiagramMiniQ8.svg Файл:GroupDiagramMiniX12.svg Файл:GroupDiagramMiniQ16.svg Файл:GroupDiagramMiniQ20.png Файл:GroupDiagramMiniQ24.png
Dic2 = Q8 Dic3 = Q12 Dic4 = Q16 Dic5 = Q20 Dic6 = Q24

Other direct products:

Файл:GroupDiagramMiniC2C4.svg Файл:GroupDiagramMiniC2x2C4.svg Файл:GroupDiagramMiniC2C6.svg Файл:GroupDiagramMiniC2C8.svg Файл:GroupDiagramMiniC4x2.svg
Z4×Z2 Z4×Z22 Z6×Z2 Z8×Z2 Z42

Symmetric groups – The symmetric group Sn contains, for any group of order n, a subgroup isomorphic to that group. Thus the cycle graph of every group of order n will be found in the cycle graph of Sn.
See example: Subgroups of S4

Extended example: Subgroups of the full octahedral group

Шаблон:Multiple image

The full octahedral group is the direct product <math>S_4 \times Z_2</math> of the symmetric group S4 and the cyclic group Z2.
Its order is 48, and it has subgroups of every order that divides 48.

In the examples below nodes that are related to each other are placed next to each other,
so these are not the simplest possible cycle graphs for these groups (like those on the right).

Файл:Full octahedral group; cycle graph.svg Файл:Subgroup of Oh; A4xC2; cycle graph.svg Файл:Subgroup of Oh; Dih4xC2 07; cycle graph.svg Файл:Subgroup of Oh; Dih6 03; cycle graph.svg
S4 × Z2 (order 48) A4 × Z2 (order 24) Dih4 × Z2 (order 16) S3 × Z2 = Dih6 (order 12)
Файл:Subgroup of Oh; S4 green orange; cycle graph.svg Файл:Subgroup of Oh; A4; cycle graph.svg Файл:Subgroup of Oh; Dih4 green orange 07; cycle graph.svg Файл:Subgroup of Oh; S3 green 03; cycle graph.svg
S4 (order 24) A4 (order 12) Dih4 (order 8) S3 = Dih3 (order 6)

Like all graphs a cycle graph can be represented in different ways to emphasize different properties. The two representations of the cycle graph of S4 are an example of that.

Шаблон:Multiple image

Шаблон:Multiple image

See also

Шаблон:Commons category

References

Шаблон:Reflist

  • Skiena, S. (1990). Cycles, Stars, and Wheels. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica (pp. 144-147).
  • Шаблон:Citation
  • Pemmaraju, S., & Skiena, S. (2003). Cycles, Stars, and Wheels. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica (pp. 248-249). Cambridge University Press.

External links