Английская Википедия:Cycles and fixed points

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:Gray code * bit reversal 16.svg
16-bit Gray code permutation G
multiplied with the bit-reversal permutation B

G has 2 fixed points, 1 2-cycle and 3 4-cycles
B has 4 fixed points and 6 2-cycles
GB has 2 fixed points and 2 7-cycles
Файл:Permutation matrix; P * column.svg
P * (1,2,3,4)T = (4,1,3,2)T

Permutation of four elements with 1 fixed point and 1 3-cycle

In mathematics, the cycles of a permutation Шаблон:Pi of a finite set S correspond bijectively to the orbits of the subgroup generated by Шаблон:Pi acting on S. These orbits are subsets of S that can be written as Шаблон:Math, such that

Шаблон:Math for Шаблон:Math, and Шаблон:Math.

The corresponding cycle of Шаблон:Pi is written as ( c1 c2 ... cn ); this expression is not unique since c1 can be chosen to be any element of the orbit.

The size Шаблон:Mvar of the orbit is called the length of the corresponding cycle; when Шаблон:Math, the single element in the orbit is called a fixed point of the permutation.

A permutation is determined by giving an expression for each of its cycles, and one notation for permutations consist of writing such expressions one after another in some order. For example, let

<math> \pi

= \begin{pmatrix} 1 & 6 & 7 & 2 & 5 & 4 & 8 & 3 \\ 2 & 8 & 7 & 4 & 5 & 3 & 6 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 1 & 3 & 5 & 8 & 7 & 6 \end{pmatrix} </math>

be a permutation that maps 1 to 2, 6 to 8, etc. Then one may write

Шаблон:Pi = ( 1 2 4 3 ) ( 5 ) ( 6 8 ) (7) = (7) ( 1 2 4 3 ) ( 6 8 ) ( 5 ) = ( 4 3 1 2 ) ( 8 6 ) ( 5 ) (7) = ...

Here 5 and 7 are fixed points of Шаблон:Pi, since Шаблон:Pi(5) = 5 and Шаблон:Pi(7)=7. It is typical, but not necessary, to not write the cycles of length one in such an expression.[1] Thus, Шаблон:Pi = (1 2 4 3)(6 8), would be an appropriate way to express this permutation.

There are different ways to write a permutation as a list of its cycles, but the number of cycles and their contents are given by the partition of S into orbits, and these are therefore the same for all such expressions.

Counting permutations by number of cycles

The unsigned Stirling number of the first kind, s(k, j) counts the number of permutations of k elements with exactly j disjoint cycles.[2][3]

Properties

(1) For every k > 0 : Шаблон:Math
(2) For every k > 0 : Шаблон:Math
(3) For every k > j > 1, Шаблон:Math

Reasons for properties

(1) There is only one way to construct a permutation of k elements with k cycles: Every cycle must have length 1 so every element must be a fixed point.
(2.a) Every cycle of length k may be written as permutation of the number 1 to k; there are k! of these permutations.
(2.b) There are k different ways to write a given cycle of length k, e.g. ( 1 2 4 3 ) = ( 2 4 3 1 ) = ( 4 3 1 2 ) = ( 3 1 2 4 ).
(2.c) Finally: Шаблон:Math
(3) There are two different ways to construct a permutation of k elements with j cycles:
(3.a) If we want element k to be a fixed point we may choose one of the Шаблон:Math permutations with Шаблон:Math elements and Шаблон:Math cycles and add element k as a new cycle of length 1.
(3.b) If we want element k not to be a fixed point we may choose one of the Шаблон:Math permutations with Шаблон:Math elements and j cycles and insert element k in an existing cycle in front of one of the Шаблон:Math elements.

Some values

Шаблон:Mvar Шаблон:Mvar
1 2 3 4 5 6 7 8 9 sum
1 1 1
2 1 1 2
3 2 3 1 6
4 6 11 6 1 24
5 24 50 35 10 1 120
6 120 274 225 85 15 1 720
7 720 1,764 1,624 735 175 21 1 5,040
8 5,040 13,068 13,132 6,769 1,960 322 28 1 40,320
9 40,320 109,584 118,124 67,284 22,449 4,536 546 36 1 362,880
1 2 3 4 5 6 7 8 9 sum

Counting permutations by number of fixed points

The value Шаблон:Math counts the number of permutations of k elements with exactly j fixed points. For the main article on this topic, see rencontres numbers.

Properties

(1) For every j < 0 or j > k : Шаблон:Math
(2) f(0, 0) = 1.
(3) For every k > 1 and kj ≥ 0, Шаблон:Math

Reasons for properties

(3) There are three different methods to construct a permutation of k elements with j fixed points:

(3.a) We may choose one of the Шаблон:Math permutations with Шаблон:Math elements and Шаблон:Math fixed points and add element k as a new fixed point.
(3.b) We may choose one of the Шаблон:Math permutations with Шаблон:Math elements and j fixed points and insert element k in an existing cycle of length > 1 in front of one of the Шаблон:Math elements.
(3.c) We may choose one of the Шаблон:Math permutations with Шаблон:Math elements and Шаблон:Math fixed points and join element k with one of the Шаблон:Math fixed points to a cycle of length 2.

Some values

Шаблон:Mvar Шаблон:Mvar
0 1 2 3 4 5 6 7 8 9 sum
1 0 1 1
2 1 0 1 2
3 2 3 0 1 6
4 9 8 6 0 1 24
5 44 45 20 10 0 1 120
6 265 264 135 40 15 0 1 720
7 1,854 1,855 924 315 70 21 0 1 5,040
8 14,833 14,832 7,420 2,464 630 112 28 0 1 40,320
9 133,496 133,497 66,744 22,260 5,544 1,134 168 36 0 1 362,880
0 1 2 3 4 5 6 7 8 9 sum

Alternate calculations

Equations Examples
<math>f(k,1)=\sum_{i=1}^k(-1)^{i+1}{k \choose i}i(k-i)!</math> <math>\begin{align}

f(5, 1) &= 5\times 1 \times4! - 10\times 2\times 3! + 10\times 3\times 2! - 5\times 4\times 1! + 1\times 5\times 0! \\ &= 120 - 120 + 60 - 20 + 5 = 45. \end{align}</math>

<math>f(k,0)=k!-\sum_{i=1}^k(-1)^{i+1}{k \choose i}(k-i)!</math> <math>\begin{align}

f(5, 0) &= 120 - ( 5\times4! - 10\times3! + 10\times2! - 5\times1! + 1\times0! ) \\ &= 120 - ( 120 - 60 + 20 - 5 + 1 ) = 120 - 76 = 44. \end{align}</math>

For every k > 1:
<math>f(k,0)=(k-1)(f(k-1,0)+f(k-2,0))</math>
<math>f(5, 0) = 4 \times ( 9 + 2 ) = 4 \times 11 = 44</math>
For every k > 1:
<math>f(k,0)=k!\sum_{i=2}^k \frac{(-1)^i}{i!} </math>
<math>\begin{align}

f(5, 0) &= 120 \times ( 1/2 - 1/6 + 1/24 - 1/120 ) \\ &= 120 \times ( 60/120 - 20/120 + 5/120 - 1/120 ) = 120 \times 44/120 = 44 \end{align}</math>

<math>f(k,0)\approx \frac{k!}e</math>
where e is Euler's number ≈ 2.71828

See also

Notes

Шаблон:Reflist

References