Английская Википедия:Cyclodecapentaene

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Chembox

Cyclodecapentaene or [10]annulene is an annulene with molecular formula C10H10. This organic compound is a conjugated 10 pi electron cyclic system and according to Huckel's rule it should display aromaticity. It is not aromatic, however, because various types of ring strain destabilize an all-planar geometry.[1]Шаблон:Rp

Conformation, strain, and non-aromaticity

Шаблон:Multiple images

Although not aromatic itself, [10]annulene can transition between different con­forma­tional isomers through aromatic or quasi­aromatic excited states, such that its con­forma­tional iso­mer­ism is fixed only at extreme cryogenic temperatures.[2] Under­stand­ing the com­posi­tion and react­ivity of these mix­tures com­put­ation­ally has proven difficult,[3] because a large number of conformations all minimize the energy locally.[4]

The all-cis isomer (1), a fully convex decagon, would have bond angles of 144°, which creates large amounts of angle strain relative to the ideal 120° in sp2 atomic hybridization. Instead, the all-cis isomer adopts a planar boat-like conformation (2) to relieve the angle strain,[5] although it, too, is less stable than the next planar isomer, trans,cis,trans,cis,cis-[10]annulene (3).Шаблон:Cite needed Yet even isomer (3) is unstable, suffering from steric repulsion between the two internal hydrogen atoms,[6] and tends to distort into the perimeter of two fused circles, one larger and the other smaller, as in azulene.[2] The nonplanar transciscisciscis isomer is the most stable of all possible isomers,Шаблон:Cite needed although it is unclear whether it too has a boat-like configuration as in conformer (4), or the "heart" configuration produced if one internal hydrogen in conformer (3) were flipped inside-out.[2]

Synthesis

Cyclodecapentaene can undergo an electrocyclic rearrangement to[7] or from dihydronaphthalene. Photolysis of the latter generates [10]annulene, but it quickly reverts to the reactant, even at cryogenic temperatures.[1]Шаблон:Rp

Aromatic derivatives

Файл:Bridged 10annulene.svg
(Шаблон:Va): an aromatic bridged [10]annulene
Файл:Twice-bridged 10annulene.svg
(Шаблон:Va): An aromatic tricyclic [10]annulene

Aromaticity can be induced in compounds having a [10]annulene-type core if planarity is forcibly imposed by other substituents. Two methods to do so are known.

One method is to formally replace two hydrogen atoms by a methylene bridge (Шаблон:Chem2); this gives the planar bicyclic 1,6-methano­[10]annulene (5). Indeed, 1,6-methano­[10]annulene has no bond length alternation in its X-ray structure and signs of a telltale diamagnetic ring current in its NMR spectrum.[3] Likewise, a tricyclic methine bridge gives an aromatic structure (6) similar to the stable oxonium ion oxatriquinacene.[8]

Файл:Cyano 10annulene derivative.svg
(Шаблон:Va): a very acidic cyclo­deca­pentaene derivative

When de­proton­ated to form the anion this type of compound is even more stabilized. The central carbanion enhances the molecule's planarity and the number of resonance structures that can be drawn is extended to 7 included two resonance forms with a complete benzene ring. Computational chemistry suggests a tricyclic[10]annulene derivative with an annulated benzene ring and a full set of cyano substituents (7) would be one of the most acidic compounds known, with a computed pKa in DMSO of −30.4 (compared to for instance −20 for magic acid).[9]

The other method is to further remove hydrogens and develop triple bonds or cyclopropanes along the ring. Thus com­puta­tional studies suggest that cyclo­deca­tetraene­yne is (although formally a 12-π system) planar and aromatic,[10] as is bicyclo[8.1.0]undeca-1,3,7,9-tetraen-5-yne.[11] Predicting the aroma­ticity of these compounds is not always obvious: the polycyclic hydrocarbon tetra­dihydro­naphtho­[10]annulene, in which a valence isomer of [10]annulene is fused to two naphthalenes, does not exhibit aromaticity inside the central 10-π ring.[12]

Other related compounds

References

Шаблон:Reflist

Шаблон:Annulenes