Английская Википедия:Cyclotomic polynomial

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of <math>x^n-1</math> and is not a divisor of <math>x^k-1</math> for any Шаблон:Nowrap Its roots are all nth primitive roots of unity <math> e^{2i\pi\frac{k}{n}} </math>, where k runs over the positive integers not greater than n and coprime to n (and i is the imaginary unit). In other words, the nth cyclotomic polynomial is equal to

<math>

\Phi_n(x) = \prod_\stackrel{1\le k\le n}{\gcd(k,n)=1} \left(x-e^{2i\pi\frac{k}{n}}\right). </math>

It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive nth-root of unity (<math> e^{2i\pi/n} </math> is an example of such a root).

An important relation linking cyclotomic polynomials and primitive roots of unity is

<math>\prod_{d\mid n}\Phi_d(x) = x^n - 1,</math>

showing that Шаблон:Math is a root of <math>x^n - 1</math> if and only if it is a dШаблон:Spaceth primitive root of unity for some d that divides n.[1]

Examples

If n is a prime number, then

<math>\Phi_n(x) = 1+x+x^2+\cdots+x^{n-1}=\sum_{k=0}^{n-1} x^k.</math>

If n = 2p where p is an odd prime number, then

<math>\Phi_{2p}(x) = 1-x+x^2-\cdots+x^{p-1}=\sum_{k=0}^{p-1} (-x)^k.</math>

For n up to 30, the cyclotomic polynomials are:[2]

<math>\begin{align}

\Phi_1(x) &= x - 1 \\ \Phi_2(x) &= x + 1 \\ \Phi_3(x) &= x^2 + x + 1 \\ \Phi_4(x) &= x^2 + 1 \\ \Phi_5(x) &= x^4 + x^3 + x^2 + x +1 \\ \Phi_6(x) &= x^2 - x + 1 \\ \Phi_7(x) &= x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_8(x) &= x^4 + 1 \\ \Phi_9(x) &= x^6 + x^3 + 1 \\ \Phi_{10}(x) &= x^4 - x^3 + x^2 - x + 1 \\ \Phi_{11}(x) &= x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{12}(x) &= x^4 - x^2 + 1 \\ \Phi_{13}(x) &= x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{14}(x) &= x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 \\ \Phi_{15}(x) &= x^8 - x^7 + x^5 - x^4 + x^3 - x + 1 \\ \Phi_{16}(x) &= x^8 + 1 \\ \Phi_{17}(x) &= x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\\ \Phi_{18}(x) &= x^6 - x^3 + 1 \\ \Phi_{19}(x) &= x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\\ \Phi_{20}(x) &= x^8 - x^6 + x^4 - x^2 + 1 \\ \Phi_{21}(x) &= x^{12} - x^{11} + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1 \\ \Phi_{22}(x) &= x^{10} - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 \\ \Phi_{23}(x) &= x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} \\ & \qquad\quad + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{24}(x) &= x^8 - x^4 + 1 \\ \Phi_{25}(x) &= x^{20} + x^{15} + x^{10} + x^5 + 1 \\ \Phi_{26}(x) &= x^{12} - x^{11} + x^{10} - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 \\ \Phi_{27}(x) &= x^{18} + x^9 + 1 \\ \Phi_{28}(x) &= x^{12} - x^{10} + x^8 - x^6 + x^4 - x^2 + 1 \\ \Phi_{29}(x) &= x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} \\ & \qquad\quad + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{30}(x) &= x^8 + x^7 - x^5 - x^4 - x^3 + x + 1. \end{align}</math>

The case of the 105th cyclotomic polynomial is interesting because 105 is the least positive integer that is the product of three distinct odd prime numbers (3*5*7) and this polynomial is the first one that has a coefficient other than 1, 0, or −1::[3]

<math>\begin{align}

\Phi_{105}(x) &= x^{48} + x^{47} + x^{46} - x^{43} - x^{42} - 2 x^{41} - x^{40} - x^{39} + x^{36} + x^{35} + x^{34} \\ &\qquad + x^{33} + x^{32} + x^{31} - x^{28} - x^{26} - x^{24} - x^{22} - x^{20} + x^{17} + x^{16} + x^{15} \\ &\qquad + x^{14} + x^{13} + x^{12} - x^9 - x^8 - 2 x^7 - x^6 - x^5 + x^2 + x + 1. \end{align}</math>

Properties

Fundamental tools

The cyclotomic polynomials are monic polynomials with integer coefficients that are irreducible over the field of the rational numbers. Except for n equal to 1 or 2, they are palindromes of even degree.

The degree of <math>\Phi_n</math>, or in other words the number of nth primitive roots of unity, is <math>\varphi (n)</math>, where <math>\varphi</math> is Euler's totient function.

The fact that <math>\Phi_n</math> is an irreducible polynomial of degree <math>\varphi (n)</math> in the ring <math>\Z[x]</math> is a nontrivial result due to Gauss.[4] Depending on the chosen definition, it is either the value of the degree or the irreducibility which is a nontrivial result. The case of prime n is easier to prove than the general case, thanks to Eisenstein's criterion.

A fundamental relation involving cyclotomic polynomials is

<math>\begin{align} x^n - 1

&=\prod_{1\leqslant k\leqslant n} \left(x- e^{2i\pi\frac{k}{n}} \right) \\ &= \prod_{d \mid n} \prod_{1 \leqslant k \leqslant n \atop \gcd(k, n) = d} \left(x- e^{2i\pi\frac{k}{n}} \right) \\ &=\prod_{d \mid n} \Phi_{\frac{n}{d}}(x) = \prod_{d\mid n} \Phi_d(x).\end{align}</math>

which means that each n-th root of unity is a primitive d-th root of unity for a unique d dividing n.

The Möbius inversion formula allows the expression of <math>\Phi_n(x)</math> as an explicit rational fraction:

<math>\Phi_n(x)=\prod_{d\mid n}(x^d-1)^{\mu \left (\frac{n}{d} \right )}, </math>

where <math>\mu</math> is the Möbius function.

The cyclotomic polynomial <math>\Phi_{n}(x)</math> may be computed by (exactly) dividing <math>x^n-1</math> by the cyclotomic polynomials of the proper divisors of n previously computed recursively by the same method:

<math>\Phi_n(x)=\frac{x^{n}-1}{\prod_{\stackrel{d|n}{{}_{d<n}}}\Phi_{d}(x)}</math>

(Recall that <math>\Phi_{1}(x)=x-1</math>.)

This formula defines an algorithm for computing <math>\Phi_n(x)</math> for any n, provided integer factorization and division of polynomials are available. Many computer algebra systems, such as SageMath, Maple, Mathematica, and PARI/GP, have a built-in function to compute the cyclotomic polynomials.

Easy cases for computation

As noted above, if Шаблон:Math is a prime number, then

<math>\Phi_n(x) = 1+x+x^2+\cdots+x^{n-1}=\sum_{k=0}^{n-1}x^k.</math>

If n is an odd integer greater than one, then

<math>\Phi_{2n}(x) = \Phi_n(-x).</math>

In particular, if Шаблон:Math is twice an odd prime, then (as noted above)

<math>\Phi_n(x) = 1-x+x^2-\cdots+x^{p-1}=\sum_{k=0}^{p-1}(-x)^k.</math>

If Шаблон:Math is a prime power (where p is prime), then

<math>\Phi_n(x) = \Phi_p(x^{p^{m-1}}) =\sum_{k=0}^{p-1}x^{kp^{m-1}}.</math>

More generally, if Шаблон:Math with Шаблон:Math relatively prime to Шаблон:Math, then

<math>\Phi_n(x) = \Phi_{pr}(x^{p^{m-1}}).</math>

These formulas may be applied repeatedly to get a simple expression for any cyclotomic polynomial <math>\Phi_n(x)</math> in term of a cyclotomic polynomial of square free index: If Шаблон:Math is the product of the prime divisors of Шаблон:Math (its radical), then[5]

<math>\Phi_n(x) = \Phi_q(x^{n/q}).</math>

This allows to give formulas for the Шаблон:Mathth cyclotomic polynomial when Шаблон:Math has at most one odd prime factor: If Шаблон:Math is an odd prime number, and Шаблон:Math and Шаблон:Math are positive integers, then:

<math>\Phi_{2^h}(x) = x^{2^{h-1}}+1</math>
<math>\Phi_{p^k}(x) = \sum_{j=0}^{p-1}x^{jp^{k-1}}</math>
<math>\Phi_{2^hp^k}(x) = \sum_{j=0}^{p-1}(-1)^jx^{j2^{h-1}p^{k-1}}</math>

For the other values of Шаблон:Math, the computation of the Шаблон:Mathth cyclotomic polynomial is similarly reduced to that of <math>\Phi_q(x),</math> where Шаблон:Math is the product of the distinct odd prime divisors of Шаблон:Math. To deal with this case, one has that, for Шаблон:Math prime and not dividing Шаблон:Math,[6]

<math>\Phi_{np}(x)=\Phi_{n}(x^p)/\Phi_n(x).</math>

Integers appearing as coefficients

The problem of bounding the magnitude of the coefficients of the cyclotomic polynomials has been the object of a number of research papers. Several survey papers give an overview.[7]

If n has at most two distinct odd prime factors, then Migotti showed that the coefficients of <math>\Phi_n</math> are all in the set {1, −1, 0}.[8]

The first cyclotomic polynomial for a product of three different odd prime factors is <math>\Phi_{105}(x);</math> it has a coefficient −2 (see its expression above). The converse is not true: <math>\Phi_{231}(x)=\Phi_{3\times 7\times 11}(x)</math> only has coefficients in {1, −1, 0}.

If n is a product of more different odd prime factors, the coefficients may increase to very high values. E.g., <math>\Phi_{15015}(x) =\Phi_{3\times 5\times 7\times 11\times 13}(x)</math> has coefficients running from −22 to 23, <math>\Phi_{255255}(x)=\Phi_{3\times 5\times 7\times 11\times 13\times 17}(x)</math>, the smallest n with 6 different odd primes, has coefficients of magnitude up to 532.

Let A(n) denote the maximum absolute value of the coefficients of Φn. It is known that for any positive k, the number of n up to x with A(n) > nk is at least c(k)⋅x for a positive c(k) depending on k and x sufficiently large. In the opposite direction, for any function ψ(n) tending to infinity with n we have A(n) bounded above by nψ(n) for almost all n.[9]

A combination of theorems of Bateman resp. Vaughan statesШаблон:R that on the one hand, for every <math>\varepsilon>0</math>, we have

<math>A(n) < e^{\left(n^{(\log 2+\varepsilon)/(\log\log n)}\right)}</math>

for all sufficiently large positive integers <math>n</math>, and on the other hand, we have

<math>A(n) > e^{\left(n^{(\log 2)/(\log\log n)}\right)}</math>

for infinitely many positive integers <math>n</math>. This implies in particular that univariate polynomials (concretely <math>x^n-1</math> for infinitely many positive integers <math>n</math>) can have factors (like <math>\Phi_n</math>) whose coefficients are superpolynomially larger than the original coefficients. This is not too far from the general Landau-Mignotte bound.

Gauss's formula

Let n be odd, square-free, and greater than 3. Then:[10][11]

<math>4\Phi_n(z) = A_n^2(z) - (-1)^{\frac{n-1}{2}}nz^2B_n^2(z)</math>

where both An(z) and Bn(z) have integer coefficients, An(z) has degree φ(n)/2, and Bn(z) has degree φ(n)/2 − 2. Furthermore, An(z) is palindromic when its degree is even; if its degree is odd it is antipalindromic. Similarly, Bn(z) is palindromic unless n is composite and ≡ 3 (mod 4), in which case it is antipalindromic.

The first few cases are

<math>\begin{align}

4\Phi_5(z) &=4(z^4+z^3+z^2+z+1)\\ &= (2z^2+z+2)^2 - 5z^2 \\[6pt] 4\Phi_7(z) &=4(z^6+z^5+z^4+z^3+z^2+z+1)\\ &= (2z^3+z^2-z-2)^2+7z^2(z+1)^2 \\ [6pt] 4\Phi_{11}(z) &=4(z^{10}+z^9+z^8+z^7+z^6+z^5+z^4+z^3+z^2+z+1)\\ &= (2z^5+z^4-2z^3+2z^2-z-2)^2+11z^2(z^3+1)^2 \end{align}</math>

Lucas's formula

Let n be odd, square-free and greater than 3. ThenШаблон:R

<math>\Phi_n(z) = U_n^2(z) - (-1)^{\frac{n-1}{2}}nzV_n^2(z)</math>

where both Un(z) and Vn(z) have integer coefficients, Un(z) has degree φ(n)/2, and Vn(z) has degree φ(n)/2 − 1. This can also be written

<math>\Phi_n \left ((-1)^{\frac{n-1}{2}}z \right ) = C_n^2(z) - nzD_n^2(z).</math>

If n is even, square-free and greater than 2 (this forces n/2 to be odd),

<math>\Phi_{\frac{n}{2}} \left (-z^2 \right ) = \Phi_{2n}(z)= C_n^2(z) - nzD_n^2(z)</math>

where both Cn(z) and Dn(z) have integer coefficients, Cn(z) has degree φ(n), and Dn(z) has degree φ(n) − 1. Cn(z) and Dn(z) are both palindromic.

The first few cases are:

<math>\begin{align}

\Phi_3(-z) &=\Phi_6(z) =z^2-z+1 \\ &= (z+1)^2 - 3z \\[6pt] \Phi_5(z) &=z^4+z^3+z^2+z+1 \\ &= (z^2+3z+1)^2 - 5z(z+1)^2 \\[6pt] \Phi_{6/2}(-z^2) &=\Phi_{12}(z)=z^4-z^2+1 \\ &= (z^2+3z+1)^2 - 6z(z+1)^2 \end{align}</math>

Sister Beiter conjecture

The Sister Beiter conjecture is concerned with the maximal size (in absolute value) <math>A(pqr)</math> of coefficients of ternary cyclotomic polynomials <math>\Phi_{pqr}(x)</math> where <math>3\leq p\leq q\leq r</math> are three prime numbers.[12]

Cyclotomic polynomials over a finite field and over the Шаблон:Math-adic integers

Шаблон:See also Over a finite field with a prime number Шаблон:Math of elements, for any integer Шаблон:Math that is not a multiple of Шаблон:Math, the cyclotomic polynomial <math>\Phi_n</math> factorizes into <math>\frac{\varphi (n)}{d}</math> irreducible polynomials of degree Шаблон:Math, where <math>\varphi (n)</math> is Euler's totient function and Шаблон:Math is the multiplicative order of Шаблон:Math modulo Шаблон:Math. In particular, <math>\Phi_n</math> is irreducible if and only if Шаблон:Math is a [[primitive root modulo n|primitive root modulo Шаблон:Mvar]], that is, Шаблон:Math does not divide Шаблон:Math, and its multiplicative order modulo Шаблон:Math is <math>\varphi(n)</math>, the degree of <math>\Phi_n</math>.[13]


These results are also true over the [[p-adic integer|Шаблон:Mvar-adic integers]], since Hensel's lemma allows lifting a factorization over the field with Шаблон:Math elements to a factorization over the Шаблон:Math-adic integers.

Polynomial values

Шаблон:Unreferenced section

If Шаблон:Math takes any real value, then <math>\Phi_n(x)>0</math> for every Шаблон:Math (this follows from the fact that the roots of a cyclotomic polynomial are all non-real, for Шаблон:Math).

For studying the values that a cyclotomic polynomial may take when Шаблон:Math is given an integer value, it suffices to consider only the case Шаблон:Math, as the cases Шаблон:Math and Шаблон:Math are trivial (one has <math>\Phi_1(x)=x-1</math> and <math>\Phi_2(x)=x+1</math>).

For Шаблон:Math, one has

<math>\Phi_n(0) =1,</math>
<math>\Phi_n(1) =1</math> if Шаблон:Math is not a prime power,
<math>\Phi_n(1) =p</math> if <math>n=p^k</math> is a prime power with Шаблон:Math.

The values that a cyclotomic polynomial <math>\Phi_n(x)</math> may take for other integer values of Шаблон:Math is strongly related with the multiplicative order modulo a prime number.

More precisely, given a prime number Шаблон:Math and an integer Шаблон:Math coprime with Шаблон:Math, the multiplicative order of Шаблон:Math modulo Шаблон:Math, is the smallest positive integer Шаблон:Math such that Шаблон:Math is a divisor of <math>b^n-1.</math> For Шаблон:Math, the multiplicative order of Шаблон:Math modulo Шаблон:Math is also the shortest period of the representation of Шаблон:Math in the numeral base Шаблон:Math (see Unique prime; this explains the notation choice).

The definition of the multiplicative order implies that, if Шаблон:Math is the multiplicative order of Шаблон:Math modulo Шаблон:Math, then Шаблон:Math is a divisor of <math>\Phi_n(b).</math> The converse is not true, but one has the following.

If Шаблон:Math is a positive integer and Шаблон:Math is an integer, then (see below for a proof)

<math>\Phi_n(b)=2^kgh,</math>

where

This implies that, if Шаблон:Math is an odd prime divisor of <math>\Phi_n(b),</math> then either Шаблон:Math is a divisor of Шаблон:Math or Шаблон:Math is a divisor of Шаблон:Math. In the latter case, <math>p^2</math> does not divide <math>\Phi_n(b).</math>

Zsigmondy's theorem implies that the only cases where Шаблон:Math and Шаблон:Math are

<math>\begin{align}

\Phi_1(2) &=1 \\ \Phi_2 \left (2^k-1 \right ) & =2^k && k >0 \\ \Phi_6(2) &=3 \end{align}</math>

It follows from above factorization that the odd prime factors of

<math>\frac{\Phi_n(b)}{\gcd(n,\Phi_n(b))}</math>

are exactly the odd primes Шаблон:Math such that Шаблон:Math is the multiplicative order of Шаблон:Math modulo Шаблон:Math. This fraction may be even only when Шаблон:Math is odd. In this case, the multiplicative order of Шаблон:Math modulo Шаблон:Math is always Шаблон:Math.

There are many pairs Шаблон:Math with Шаблон:Math such that <math>\Phi_n(b)</math> is prime. In fact, Bunyakovsky conjecture implies that, for every Шаблон:Math, there are infinitely many Шаблон:Math such that <math>\Phi_n(b)</math> is prime. See Шаблон:Oeis for the list of the smallest Шаблон:Math such that <math>\Phi_n(b)</math> is prime (the smallest Шаблон:Math such that <math>\Phi_n(b)</math> is prime is about <math>\lambda \cdot \varphi(n)</math>, where <math>\lambda</math> is Euler–Mascheroni constant, and <math>\varphi</math> is Euler's totient function). See also Шаблон:Oeis for the list of the smallest primes of the form <math>\Phi_n(b)</math> with Шаблон:Math and Шаблон:Math, and, more generally, Шаблон:Oeis, for the smallest positive integers of this form. Шаблон:Cot

  • Values of <math>\Phi_n(1).</math> If <math>n=p^{k+1}</math> is a prime power, then
<math>\Phi_n(x)=1+x^{p^k}+x^{2p^{k}}+\cdots+x^{(p-1)p^k} \qquad \text{and} \qquad \Phi_n(1)=p.</math>
If Шаблон:Math is not a prime power, let <math>P(x)=1+x+\cdots+x^{n-1},</math> we have <math>P(1)=n,</math> and Шаблон:Math is the product of the <math>\Phi_k(x)</math> for Шаблон:Math dividing Шаблон:Math and different of Шаблон:Math. If Шаблон:Math is a prime divisor of multiplicity Шаблон:Math in Шаблон:Math, then <math>\Phi_p(x), \Phi_{p^2}(x), \cdots, \Phi_{p^m}(x)</math> divide Шаблон:Math, and their values at Шаблон:Math are Шаблон:Math factors equal to Шаблон:Math of <math>n=P(1).</math> As Шаблон:Math is the multiplicity of Шаблон:Math in Шаблон:Math, Шаблон:Math cannot divide the value at Шаблон:Math of the other factors of <math>P(x).</math> Thus there is no prime that divides <math>\Phi_n(1).</math>
<math>S(x)=\frac{x^n-1}{x^m-1} = 1 + x^m + x^{2m} + \cdots + x^{(p-1)m}.</math>
The multiplicative order of Шаблон:Math modulo Шаблон:Math divides Шаблон:Math, which is a divisor of Шаблон:Math. Thus Шаблон:Math is a multiple of Шаблон:Math. Now,
<math>S(b) = \frac{(1+c)^p-1}{c} = p+ \binom{p}{2}c + \cdots + \binom{p}{p}c^{p-1}.</math>
As Шаблон:Math is prime and greater than 2, all the terms but the first one are multiples of <math>p^2.</math> This proves that <math>p^2 \nmid \Phi_n(b).</math>

Шаблон:Cob

Applications

Using <math>\Phi_n</math>, one can give an elementary proof for the infinitude of primes congruent to 1 modulo n,[14] which is a special case of Dirichlet's theorem on arithmetic progressions. Шаблон:Cot Suppose <math>p_1, p_2, \ldots, p_k</math> is a finite list of primes congruent to <math>1</math> modulo <math>n.</math> Let <math>N = np_1p_2\cdots p_k</math> and consider <math>\Phi_n(N)</math>. Let <math>q</math> be a prime factor of <math>\Phi_n(N)</math> (to see that <math>\Phi_n(N) \neq \pm 1</math> decompose it into linear factors and note that 1 is the closest root of unity to <math>N</math>). Since <math>\Phi_n(x) \equiv \pm 1 \pmod x,</math> we know that <math>q</math> is a new prime not in the list. We will show that <math>q \equiv 1 \pmod n.</math>

Let <math>m</math> be the order of <math>N</math> modulo <math>q.</math> Since <math>\Phi_n(N) \mid N^n - 1</math> we have <math>N^n -1 \equiv 0 \pmod{q}</math>. Thus <math>m \mid n</math>. We will show that <math>m = n</math>.

Assume for contradiction that <math>m < n</math>. Since

<math>\prod_{d \mid m} \Phi_d(N) = N^m - 1 \equiv 0 \pmod q</math>

we have

<math>\Phi_d(N) \equiv 0 \pmod q,</math>

for some <math>d < n</math>. Then <math>N</math> is a double root of

<math>\prod_{d \mid n} \Phi_d(x) \equiv x^n -1 \pmod q.</math>

Thus <math>N</math> must be a root of the derivative so

<math>\left.\frac{d(x^n -1)}{dx}\right|_N \equiv nN^{n-1} \equiv 0 \pmod q.</math>

But <math>q \nmid N</math> and therefore <math>q \nmid n.</math> This is a contradiction so <math>m = n</math>. The order of <math>N \pmod q,</math> which is <math>n</math>, must divide <math>q-1</math>. Thus <math>q \equiv 1 \pmod n.</math> Шаблон:Cob

See also

References

Шаблон:Reflist

Further reading

Gauss's book Disquisitiones Arithmeticae has been translated from Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.

External links