Английская Википедия:De Rham invariant

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In geometric topology, the de Rham invariant is a mod 2 invariant of a (4k+1)-dimensional manifold, that is, an element of <math>\mathbf{Z}/2</math> – either 0 or 1. It can be thought of as the simply-connected symmetric L-group <math>L^{4k+1},</math> and thus analogous to the other invariants from L-theory: the signature, a 4k-dimensional invariant (either symmetric or quadratic, <math>L^{4k} \cong L_{4k}</math>), and the Kervaire invariant, a (4k+2)-dimensional quadratic invariant <math>L_{4k+2}.</math>

It is named for Swiss mathematician Georges de Rham, and used in surgery theory.[1][2]

Definition

The de Rham invariant of a (4k+1)-dimensional manifold can be defined in various equivalent ways:[3]

References

Шаблон:Reflist Шаблон:Refbegin

Шаблон:Refend