Английская Википедия:Demihypercube

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Distinguish

Файл:CubeAndStel.svg
Alternation of the Шаблон:Nowrap yields one of two Шаблон:Nowrap, as in this Шаблон:Nowrap illustration of the two tetrahedra that arise as the Шаблон:Nowrap of the Шаблон:Nowrap.

In geometry, demihypercubes (also called n-demicubes, n-hemicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as n for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n (n−1)-demicubes, and 2n (n−1)-simplex facets are formed in place of the deleted vertices.[1]

They have been named with a demi- prefix to each hypercube name: demicube, demitesseract, etc. The demicube is identical to the regular tetrahedron, and the demitesseract is identical to the regular 16-cell. The demipenteract is considered semiregular for having only regular facets. Higher forms do not have all regular facets but are all uniform polytopes.

The vertices and edges of a demihypercube form two copies of the halved cube graph.

An n-demicube has inversion symmetry if n is even.

Discovery

Thorold Gosset described the demipenteract in his 1900 publication listing all of the regular and semiregular figures in n-dimensions above three. He called it a 5-ic semi-regular. It also exists within the semiregular k21 polytope family.

The demihypercubes can be represented by extended Schläfli symbols of the form h{4,3,...,3} as half the vertices of {4,3,...,3}. The vertex figures of demihypercubes are rectified n-simplexes.

Constructions

They are represented by Coxeter-Dynkin diagrams of three constructive forms:

  1. Шаблон:CDD...Шаблон:CDD (As an alternated orthotope) s{21,1,...,1}
  2. Шаблон:CDD...Шаблон:CDD (As an alternated hypercube) h{4,3n−1}
  3. Шаблон:CDD...Шаблон:CDD. (As a demihypercube) {31,n−3,1}

H.S.M. Coxeter also labeled the third bifurcating diagrams as 1k1 representing the lengths of the three branches and led by the ringed branch.

An n-demicube, n greater than 2, has n(n−1)/2 edges meeting at each vertex. The graphs below show less edges at each vertex due to overlapping edges in the symmetry projection.

n  1k1  Petrie
polygon
Schläfli symbol Coxeter diagrams
A1n
Bn
Dn
Elements Facets:
Demihypercubes &
Simplexes
Vertex figure
Vertices Edges      Faces Cells 4-faces 5-faces 6-faces 7-faces 8-faces 9-faces
2 1−1,1 demisquare
(digon)
Файл:Complete graph K2.svg
s{2}
h{4}
{31,−1,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
2 2                  
2 edges
--
3 101 demicube
(tetrahedron)
Файл:3-demicube.svgФайл:3-demicube t0 B3.svg
s{21,1}
h{4,3}
{31,0,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
4 6 4               (6 digons)
4 triangles
Triangle
(Rectified triangle)
4 111 demitesseract
(16-cell)
Файл:4-demicube t0 D4.svgФайл:4-demicube t0 B4.svg
s{21,1,1}
h{4,3,3}
{31,1,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
8 24 32 16             8 demicubes
(tetrahedra)
8 tetrahedra
Octahedron
(Rectified tetrahedron)
5 121 demipenteract
Файл:5-demicube t0 D5.svgФайл:5-demicube t0 B5.svg
s{21,1,1,1}
h{4,33}{31,2,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
16 80 160 120 26           10 16-cells
16 5-cells
Rectified 5-cell
6 131 demihexeract
Файл:6-demicube t0 D6.svgФайл:6-demicube t0 B6.svg
s{21,1,1,1,1}
h{4,34}{31,3,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
32 240 640 640 252 44         12 demipenteracts
32 5-simplices
Rectified hexateron
7 141 demihepteract
Файл:7-demicube t0 D7.svgФайл:7-demicube t0 B7.svg
s{21,1,1,1,1,1}
h{4,35}{31,4,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
64 672 2240 2800 1624 532 78       14 demihexeracts
64 6-simplices
Rectified 6-simplex
8 151 demiocteract
Файл:8-demicube t0 D8.svgФайл:8-demicube t0 B8.svg
s{21,1,1,1,1,1,1}
h{4,36}{31,5,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
128 1792 7168 10752 8288 4032 1136 144     16 demihepteracts
128 7-simplices
Rectified 7-simplex
9 161 demienneract
Файл:9-demicube t0 D9.svgФайл:9-demicube t0 B9.svg
s{21,1,1,1,1,1,1,1}
h{4,37}{31,6,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
256 4608 21504 37632 36288 23520 9888 2448 274   18 demiocteracts
256 8-simplices
Rectified 8-simplex
10 171 demidekeract
Файл:10-demicube.svgФайл:10-demicube graph.png
s{21,1,1,1,1,1,1,1,1}
h{4,38}{31,7,1}
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD
512 11520 61440 122880 142464 115584 64800 24000 5300 532 20 demienneracts
512 9-simplices
Rectified 9-simplex
...
n 1n−3,1 n-demicube s{21,1,...,1}
h{4,3n−2}{31,n−3,1}
Шаблон:CDD...Шаблон:CDD
Шаблон:CDD...Шаблон:CDD
Шаблон:CDD...Шаблон:CDD
2n−1   2n (n−1)-demicubes
2n−1 (n−1)-simplices
Rectified (n−1)-simplex

In general, a demicube's elements can be determined from the original n-cube: (with Cn,m = mth-face count in n-cube = 2nm n!/(m!(nm)!))

  • Vertices: Dn,0 = 1/2 Cn,0 = 2n−1 (Half the n-cube vertices remain)
  • Edges: Dn,1 = Cn,2 = 1/2 n(n−1) 2n−2 (All original edges lost, each square faces create a new edge)
  • Faces: Dn,2 = 4 * Cn,3 = 2/3 n(n−1)(n−2) 2n−3 (All original faces lost, each cube creates 4 new triangular faces)
  • Cells: Dn,3 = Cn,3 + 23 Cn,4 (tetrahedra from original cells plus new ones)
  • Hypercells: Dn,4 = Cn,4 + 24 Cn,5 (16-cells and 5-cells respectively)
  • ...
  • [For m = 3,...,n−1]: Dn,m = Cn,m + 2m Cn,m+1 (m-demicubes and m-simplexes respectively)
  • ...
  • Facets: Dn,n−1 = 2n + 2n−1 ((n−1)-demicubes and (n−1)-simplices respectively)

Symmetry group

The stabilizer of the demihypercube in the hyperoctahedral group (the Coxeter group <math>BC_n</math> [4,3n−1]) has index 2. It is the Coxeter group <math>D_n,</math> [3n−3,1,1] of order <math>2^{n-1}n!</math>, and is generated by permutations of the coordinate axes and reflections along pairs of coordinate axes.[2]

Orthotopic constructions

Файл:Rhombic disphenoid.png
The rhombic disphenoid inside of a cuboid

Constructions as alternated orthotopes have the same topology, but can be stretched with different lengths in n-axes of symmetry.

The rhombic disphenoid is the three-dimensional example as alternated cuboid. It has three sets of edge lengths, and scalene triangle faces.

See also

References

Шаблон:Reflist

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, Шаблон:ISBN (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Шаблон:ISBN [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

External links

Шаблон:Dimension topics Шаблон:Polytopes

  1. Regular and semi-regular polytopes III, p. 315-316
  2. Шаблон:Cite web