Английская Википедия:Determinantal point process

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In mathematics, a determinantal point process is a stochastic point process, the probability distribution of which is characterized as a determinant of some function. Such processes arise as important tools in random matrix theory, combinatorics, physics,[1] and wireless network modeling.[2][3][4]

Definition

Let <math>\Lambda</math> be a locally compact Polish space and <math>\mu</math> be a Radon measure on <math>\Lambda</math>. Also, consider a measurable function <math>K: \Lambda^2 \to \mathbb{C}</math>.

We say that <math>X</math> is a determinantal point process on <math>\Lambda</math> with kernel <math>K</math> if it is a simple point process on <math>\Lambda</math> with a joint intensity or correlation function (which is the density of its factorial moment measure) given by

<math> \rho_n(x_1,\ldots,x_n) = \det[K(x_i,x_j)]_{1 \le i,j \le n} </math>

for every n ≥ 1 and x1, ..., xn ∈ Λ.[5]

Properties

Existence

The following two conditions are necessary and sufficient for the existence of a determinantal random point process with intensities ρk.

  • Symmetry: ρk is invariant under action of the symmetric group Sk. Thus: <math display="block">\rho_k(x_{\sigma(1)}, \ldots, x_{\sigma(k)}) = \rho_k(x_1, \ldots, x_k)\quad \forall \sigma \in S_k, k</math>
  • Positivity: For any N, and any collection of measurable, bounded functions Шаблон:Nowrap k = 1, ..., N with compact support:Шаблон:Pb If <math display="block"> \varphi_0 + \sum_{k=1}^N \sum_{i_1 \neq \cdots \neq i_k } \varphi_k(x_{i_1} \ldots x_{i_k})\ge 0 \text{ for all }k,(x_i)_{i = 1}^k </math> Then [6] <math display="block"> \varphi_0 + \sum_{k=1}^N \int_{\Lambda^k} \varphi_k(x_1, \ldots, x_k)\rho_k(x_1,\ldots,x_k)\,\textrm{d}x_1\cdots\textrm{d}x_k \ge0 \text{ for all } k, (x_i)_{i = 1}^k </math>

Uniqueness

A sufficient condition for the uniqueness of a determinantal random process with joint intensities ρk is <math display="block">\sum_{k = 0}^\infty \left( \frac{1}{k!} \int_{A^k} \rho_k(x_1,\ldots,x_k) \, \textrm{d}x_1\cdots\textrm{d}x_k \right)^{-\frac{1}{k}} = \infty</math> for every bounded Borel Шаблон:Nowrap[6]

Examples

Gaussian unitary ensemble

Шаблон:Main The eigenvalues of a random m × m Hermitian matrix drawn from the Gaussian unitary ensemble (GUE) form a determinantal point process on <math>\mathbb{R}</math> with kernel

<math>K_m(x,y) = \sum_{k=0}^{m-1} \psi_k(x) \psi_k(y)</math>

where <math>\psi_k(x)</math> is the <math>k</math>th oscillator wave function defined by

<math>

\psi_k(x)= \frac{1}{\sqrt{\sqrt{2n}n!}}H_k(x) e^{-x^2/4} </math>

and <math>H_k(x)</math> is the <math>k</math>th Hermite polynomial. [7]

Poissonized Plancherel measure

The poissonized Plancherel measure on partitions of integers (and therefore on Young diagrams) plays an important role in the study of the longest increasing subsequence of a random permutation. The point process corresponding to a random Young diagram, expressed in modified Frobenius coordinates, is a determinantal point process on <math>\mathbb{Z}</math> + Шаблон:Frac with the discrete Bessel kernel, given by:

<math>K(x,y) =

\begin{cases} \sqrt{\theta} \, \dfrac{k_+(|x|,|y|)}{|x|-|y|} & \text{if } xy >0,\\[12pt] \sqrt{\theta} \, \dfrac{k_-(|x|,|y|)}{x-y} & \text{if } xy <0, \end{cases} </math> where

<math> k_+(x,y) = J_{x-\frac{1}{2}}(2\sqrt{\theta})J_{y+\frac{1}{2}}(2\sqrt{\theta}) - J_{x+\frac{1}{2}}(2\sqrt{\theta})J_{y-\frac{1}{2}}(2\sqrt{\theta}), </math>
<math> k_-(x,y) = J_{x-\frac{1}{2}}(2\sqrt{\theta})J_{y-\frac{1}{2}}(2\sqrt{\theta}) + J_{x+\frac{1}{2}}(2\sqrt{\theta})J_{y+\frac{1}{2}}(2\sqrt{\theta}) </math>

For J the Bessel function of the first kind, and θ the mean used in poissonization.[8]

This serves as an example of a well-defined determinantal point process with non-Hermitian kernel (although its restriction to the positive and negative semi-axis is Hermitian).[6]

Uniform spanning trees

Let G be a finite, undirected, connected graph, with edge set E. Define Ie:E → 2(E) as follows: first choose some arbitrary set of orientations for the edges E, and for each resulting, oriented edge e, define Ie to be the projection of a unit flow along e onto the subspace of 2(E) spanned by star flows.[9] Then the uniformly random spanning tree of G is a determinantal point process on E, with kernel

<math>K(e,f) = \langle I^e,I^f \rangle ,\quad e,f \in E</math>.[5]

References

Шаблон:Reflist

  1. Шаблон:Cite book
  2. Шаблон:Cite journal
  3. Шаблон:Cite journal
  4. N. Deng, W. Zhou, and M. Haenggi. The Ginibre point process as a model for wireless networks with repulsion. IEEE Transactions on Wireless Communications, vol. 14, pp. 107-121, Jan. 2015.
  5. 5,0 5,1 Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B., Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series, 51. American Mathematical Society, Providence, RI, 2009.
  6. 6,0 6,1 6,2 A. Soshnikov, Determinantal random point fields. Russian Math. Surveys, 2000, 55 (5), 923–975.
  7. B. Valko. Random matrices, lectures 14–15. Course lecture notes, University of Wisconsin-Madison.
  8. A. Borodin, A. Okounkov, and G. Olshanski, On asymptotics of Plancherel measures for symmetric groups, available via Шаблон:ArXiv.
  9. Lyons, R. with Peres, Y., Probability on Trees and Networks. Cambridge University Press, In preparation. Current version available at http://mypage.iu.edu/~rdlyons/