Diamidophosphate (DAP) is the simplest phosphorodiamidate ion, with formula PO2(NH2)2−. It is a phosphorylating ion and was first used for phosphorylation of sugars in aqueous medium.[1] DAP has attracted interest in the area of primordial chemistry.[2]
At 160 °C, Na2P2O4(NH)(NH2)2, Na3P3O6(NH)2(NH2)2, Na4P4O8(NH)3(NH2)2, Na5P5O10(NH)4(NH2)2 and Na6P6O12(NH)5(NH2)2 are produced. These substances contain P-N-P backbones. These can be separated by paper chromatography.
Diamidophosphate inhibits urease enzymes by blocking up the active site, binding to two nickel centers. Diamidophosphate mimics the urea hydrolysis intermediate.[5]
Diamidophosphate is tribasic, and the amine groups may also lose hydrogen to form more metallic salts. With silver, further reactions can yield explosive salts: tetrasilver orthodiamidophosphate (AgO)3P(NH2)NHAg, and pentasilver orthodiamidophosphate (AgO)3P(NHAg)2.[6]
DAP phosphorylates deoxynucleosides (the building blocks of DNA, and at the same time initiates polymerization to make DNA.[9] DAP facilitates the synthesis of larger RNA sequences (ribozymes) from smaller RNA strands.[10] Other nitrogenous derivatives of phosphorus derivatives have also been proposed in this context in a review article.[11]