Английская Википедия:Dini test

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In mathematics, the Dini and Dini–Lipschitz tests are highly precise tests that can be used to prove that the Fourier series of a function converges at a given point. These tests are named after Ulisse Dini and Rudolf Lipschitz.[1]

Definition

Let Шаблон:Mvar be a function on [0,2Шаблон:Pi], let Шаблон:Mvar be some point and let Шаблон:Mvar be a positive number. We define the local modulus of continuity at the point Шаблон:Mvar by

<math>\left.\right.\omega_f(\delta;t)=\max_{|\varepsilon| \le \delta} |f(t)-f(t+\varepsilon)|</math>

Notice that we consider here Шаблон:Mvar to be a periodic function, e.g. if Шаблон:Math and Шаблон:Mvar is negative then we define Шаблон:Math.

The global modulus of continuity (or simply the modulus of continuity) is defined by

<math>\omega_f(\delta) = \max_t \omega_f(\delta;t)</math>

With these definitions we may state the main results:

Theorem (Dini's test): Assume a function Шаблон:Mvar satisfies at a point Шаблон:Mvar that
<math>\int_0^\pi \frac{1}{\delta}\omega_f(\delta;t)\,\mathrm{d}\delta < \infty.</math>
Then the Fourier series of Шаблон:Mvar converges at Шаблон:Mvar to Шаблон:Math.

For example, the theorem holds with Шаблон:Math but does not hold with Шаблон:Math.

Theorem (the Dini–Lipschitz test): Assume a function Шаблон:Mvar satisfies
<math>\omega_f(\delta)=o\left(\log\frac{1}{\delta}\right)^{-1}.</math>
Then the Fourier series of Шаблон:Mvar converges uniformly to Шаблон:Mvar.

In particular, any function of a Hölder classШаблон:Clarify satisfies the Dini–Lipschitz test.

Precision

Both tests are the best of their kind. For the Dini-Lipschitz test, it is possible to construct a function Шаблон:Mvar with its modulus of continuity satisfying the test with [[Big O notation|Шаблон:Mvar instead of Шаблон:Mvar]], i.e.

<math>\omega_f(\delta)=O\left(\log\frac{1}{\delta}\right)^{-1}.</math>

and the Fourier series of Шаблон:Mvar diverges. For the Dini test, the statement of precision is slightly longer: it says that for any function Ω such that

<math>\int_0^\pi \frac{1}{\delta}\Omega(\delta)\,\mathrm{d}\delta = \infty</math>

there exists a function Шаблон:Mvar such that

<math>\omega_f(\delta;0) < \Omega(\delta)</math>

and the Fourier series of Шаблон:Mvar diverges at 0.

See also

References

Шаблон:Reflist