Английская Википедия:Dirichlet energy

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, the Dirichlet energy is a measure of how variable a function is. More abstractly, it is a quadratic functional on the Sobolev space Шаблон:Math. The Dirichlet energy is intimately connected to Laplace's equation and is named after the German mathematician Peter Gustav Lejeune Dirichlet.

Definition

Given an open set Шаблон:Math and a function Шаблон:Math the Dirichlet energy of the function Шаблон:Math is the real number

<math>E[u] = \frac 1 2 \int_\Omega \| \nabla u(x) \|^2 \, dx,</math>

where Шаблон:Math denotes the gradient vector field of the function Шаблон:Math.

Properties and applications

Since it is the integral of a non-negative quantity, the Dirichlet energy is itself non-negative, i.e. Шаблон:Math for every function Шаблон:Math.

Solving Laplace's equation <math>-\Delta u(x) = 0</math> for all <math>x \in \Omega</math>, subject to appropriate boundary conditions, is equivalent to solving the variational problem of finding a function Шаблон:Math that satisfies the boundary conditions and has minimal Dirichlet energy.

Such a solution is called a harmonic function and such solutions are the topic of study in potential theory.

In a more general setting, where Шаблон:Math is replaced by any Riemannian manifold Шаблон:Math, and Шаблон:Math is replaced by Шаблон:Math for another (different) Riemannian manifold Шаблон:Math, the Dirichlet energy is given by the sigma model. The solutions to the Lagrange equations for the sigma model Lagrangian are those functions Шаблон:Math that minimize/maximize the Dirichlet energy. Restricting this general case back to the specific case of Шаблон:Math just shows that the Lagrange equations (or, equivalently, the Hamilton–Jacobi equations) provide the basic tools for obtaining extremal solutions.

See also

References