In mathematics, an infinite geometric series of the form
- <math>\sum_{n=1}^\infty ar^{n-1} = a + ar + ar^2 + ar^3 +\cdots</math>
is divergent if and only if | r | ≥ 1. Methods for summation of divergent series are sometimes useful, and usually evaluate divergent geometric series to a sum that agrees with the formula for the convergent case
- <math>\sum_{n=1}^\infty ar^{n-1} = \frac{a}{1-r}.</math>
This is true of any summation method that possesses the properties of regularity, linearity, and stability.
Examples
In increasing order of difficulty to sum:
Motivation for study
It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method sums Σzn to 1/(1 - z) for all z in a subset S of the complex plane, given certain restrictions on S, then the method also gives the analytic continuation of any other function Шаблон:Nowrap on the intersection of S with the Mittag-Leffler star for f.[1]
Summability by region
Open unit disk
Ordinary summation succeeds only for common ratios |z| < 1.
Closed unit disk
Larger disks
Half-plane
The series is Borel summable for every z with real part < 1. Any such series is also summable by the generalized Euler method (E, a) for appropriate a.
Shadowed plane
Certain moment constant methods besides Borel summation can sum the geometric series on the entire Mittag-Leffler star of the function 1/(1 − z), that is, for all z except the ray z ≥ 1.[2]
Everywhere
Notes
Шаблон:Reflist
References
Шаблон:Refbegin
Шаблон:Refend
Шаблон:Series (mathematics)
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
- ↑ Korevaar p.288
- ↑ Moroz p.21