Английская Википедия:Dopamine receptor D2

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Cs1 config Шаблон:Short description

Шаблон:Use dmy dates Шаблон:Infobox gene Dopamine receptor D2, also known as D2R, is a protein that, in humans, is encoded by the DRD2 gene. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D2 receptor.[1] The dopamine D2 receptor is the main receptor for most antipsychotic drugs. The structure of DRD2 in complex with the atypical antipsychotic risperidone has been determined.[2][3]

Function

D2 receptors are coupled to Gi subtype of G protein. This G protein-coupled receptor inhibits adenylyl cyclase activity.[4]

In mice, regulation of D2R surface expression by the neuronal calcium sensor-1 (NCS-1) in the dentate gyrus is involved in exploration, synaptic plasticity and memory formation.[5] Studies have shown potential roles for D2R in retrieval of fear memories in the prelimbic cortex[6] and in discrimination learning in the nucleus accumbens.[7]

In flies, activation of the D2 autoreceptor protected dopamine neurons from cell death induced by MPP+, a toxin mimicking Parkinson's disease pathology.[8]

While optimal dopamine levels favor D1R cognitive stabilization, it is the D2R that mediates the cognitive flexibility in humans.[9][10][11]

IsoformsШаблон:Anchor

Alternative splicing of this gene results in three transcript variants encoding different isoforms.[12]

The long form (D2Lh) has the "canonical" sequence and functions as a classic post-synaptic receptor.[13] The short form (D2Sh) is pre-synaptic and functions as an autoreceptor that regulates the levels of dopamine in the synaptic cleft.[13] Agonism of D2sh receptors inhibits dopamine release; antagonism increases dopaminergic release.[13] A third D2(Longer) form differs from the canonical sequence where 270V is replaced by VVQ.[14]

Active and inactive forms

D2R conformers are equilibrated between two full active (D2HighR) and inactive (D2LowR) states, while in complex with an agonist and antagonist ligand, respectively.

The monomeric inactive conformer of D2R in binding with risperidone was reported in 2018 (PDB ID: 6CM4). However, the active form which is generally bound to an agonist, is not available yet and in most of the studies the homology modeling of the structure is implemented. The difference between the active and inactive of G protein-coupled receptor is mainly observed as conformational changes at the cytoplasmic half of the structure, particularly at the transmembrane domains (TM) 5 and 6. The conformational transitions occurred at the cytoplasmic ends are due to the coupling of G protein to the cytoplasmic loop between the TM 5 and 6.[15]

It was observed that either D2R agonist or antagonist ligands revealed better binding affinities inside the ligand-binding domain of the active D2R in comparison with the inactive state. It demonstrated that ligand-binding domain of D2R is affected by the conformational changes occurring at the cytoplasmic domains of the TM 5 and 6. In consequence, the D2R activation reflects a positive cooperation on the ligand-binding domain.

In drug discovery studies in order to calculate the binding affinities of the D2R ligands inside the binding domain, it's important to work on which form of D2R. It's known that the full active and inactive states are recommended to be used for the agonist and antagonist studies, respectively.

Any disordering in equilibration of D2R states, which causes problems in signal transferring between the nervous systems, may lead to diverse serious disorders, such as schizophrenia,[16] autism {{citation needed}} and Parkinson's disease {{citation needed}}. In order to assist in the management of these conditions, equilibration between the D2R states is controlled by implementing of agonist and antagonist D2R ligands {{citation needed}}. In most cases, it was observed that the problems regarding the D2R states may have genetic roots and are controlled by drug therapies {{citation needed}}. So far, there is no certain treatment for these mental disorders.

Allosteric pocket and orthosteric pocket

There is an orthosteric binding site (OBS), as well as a secondary binding pocket (SBP) on the dopamine 2 receptor, and interaction with the SBP is a requirement for allosteric pharmacology. The compound SB269652 is a negative allosteric modulator of the D2R.[17]

Oligomerization of D2R

It was observed that D2R exists in dimeric forms or higher order oligomers.[18] There are some experimental and molecular modeling evidences that demonstrated the D2R monomers cross link from their TM 4 and TM 5 to form dimeric conformers.[19][20]

Genetics

Allelic variants:

Some researchers have previously associated the polymorphism Taq 1A (rs1800497) to the DRD2 gene. However, the polymorphism resides in exon 8 of the ANKK1 gene.[24] DRD2 TaqIA polymorphism has been reported to be associated with an increased risk for developing motor fluctuations but not hallucinations in Parkinson's disease.[25][26] A splice variant in Dopamine receptor D2(rs1076560) was found to be associated with limb truncal Tardive dyskinesia and diminished expression factor of Positive and Negative Syndrome Scale (PANSS) in schizophrenia subjects.[27]

Ligands

Most of the older antipsychotic drugs such as chlorpromazine and haloperidol are antagonists for the dopamine D2 receptor, but are, in general, very unselective, at best selective only for the "D2-like family" receptors and so binding to D2, D3 and D4, and often also to many other receptors such as those for serotonin and histamine, resulting in a range of side-effects and making them poor agents for scientific research. In similar manner, older dopamine agonists used for Parkinson's disease such as bromocriptine and cabergoline are poorly selective for one dopamine receptor over another, and, although most of these agents do act as D2 agonists, they affect other subtypes as well. Several selective D2 ligands are, however, now available, and this number is likely to increase as further research progresses.

Agonists

Шаблон:Div col

Шаблон:Div col end

Partial agonists

Шаблон:Div col

Шаблон:Div col end

Antagonists

Шаблон:Div col

D2sh selective (presynaptic autoreceptors)

Шаблон:Div col end

Allosteric modulators

Шаблон:Div col

Шаблон:Div col end

Heterobivalent ligands

  • 1-(6-(((R,S)-7-Hydroxychroman-2-yl)methylamino]hexyl)-3-((S)-1-methylpyrrolidin-2-yl)pyridinium bromide (compound 2, D2R agonist and nAChR antagonist)[43]

Dual D2AR/ A2AAR ligands

  • Dual agonists for A2AAR and D2AR receptors have been developed.[44]

Functionally selective ligands

Protein–protein interactions

The dopamine receptor D2 has been shown to interact with EPB41L1,[46] PPP1R9B[47] and NCS-1.[48]

Receptor oligomers

The D2 receptor forms receptor heterodimers in vivo (i.e., in living animals) with other G protein-coupled receptors; these include:[49]

The D2 receptor has been shown to form hetorodimers in vitro (and possibly in vivo) with DRD3,[52] DRD5,[53] and 5-HT2A.[54]

See also

Explanatory notes

Шаблон:Reflist

References

Шаблон:Reflist

External links

Шаблон:NLM content Шаблон:G protein-coupled receptors Шаблон:Dopaminergics

  1. Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. Шаблон:Cite web
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. Шаблон:Cite web
  13. 13,0 13,1 13,2 Шаблон:Cite journal
  14. Шаблон:UniProt Full
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite journal
  18. Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. Шаблон:Cite web
  29. 29,0 29,1 Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. Шаблон:Cite journal
  44. Шаблон:Cite journal
  45. Шаблон:Cite journal
  46. Шаблон:Cite journal
  47. Шаблон:Cite journal
  48. Шаблон:Cite journal
  49. Шаблон:Cite journal
  50. Шаблон:Cite journal
  51. Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. Шаблон:Cite journal


Ошибка цитирования Для существующих тегов <ref> группы «note» не найдено соответствующего тега <references group="note"/>