Английская Википедия:Duoprism

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Set of uniform Шаблон:Mvar duoprisms
Type Prismatic uniform 4-polytopes
Schläfli symbol Шаблон:Math
Coxeter-Dynkin diagram Шаблон:CDD
Cells Шаблон:Mvar-gonal prisms,
Шаблон:Mvar-gonal prisms
Faces Шаблон:Mvar squares,
Шаблон:Mvar-gons,
Шаблон:Mvar-gons
Edges Шаблон:Math
Vertices Шаблон:Mvar
Vertex figure Файл:Pq-duoprism verf.png
disphenoid
Symmetry Шаблон:Math, order Шаблон:Math
Dual Шаблон:Mvar duopyramid
Properties convex, vertex-uniform
 
Set of uniform p-p duoprisms
Type Prismatic uniform 4-polytope
Schläfli symbol Шаблон:Math
Coxeter-Dynkin diagram Шаблон:CDD
Cells Шаблон:Math-gonal prisms
Faces Шаблон:Math squares,
Шаблон:Math-gons
Edges Шаблон:Math
Vertices Шаблон:Math
Symmetry Шаблон:Math order Шаблон:Math
Dual Шаблон:Mvar duopyramid
Properties convex, vertex-uniform, Facet-transitive
Файл:23,29-duoprism stereographic closeup.jpg
A close up inside the 23-29 duoprism projected onto a 3-sphere, and perspective projected to 3-space. As Шаблон:Mvar and Шаблон:Mvar become large, a duoprism approaches the geometry of duocylinder just like a Шаблон:Mvar-gonal prism approaches a cylinder.

In geometry of 4 dimensions or higher, a double prism[1] or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an Шаблон:Mvar-polytope and an Шаблон:Mvar-polytope is an Шаблон:Math-polytope, where Шаблон:Mvar and Шаблон:Mvar are dimensions of 2 (polygon) or higher.

The lowest-dimensional duoprisms exist in 4-dimensional space as 4-polytopes being the Cartesian product of two polygons in 2-dimensional Euclidean space. More precisely, it is the set of points:

<math>P_1 \times P_2 = \{ (x,y,z,w) | (x,y)\in P_1, (z,w)\in P_2 \}</math>

where Шаблон:Math and Шаблон:Math are the sets of the points contained in the respective polygons. Such a duoprism is convex if both bases are convex, and is bounded by prismatic cells.

Nomenclature

Four-dimensional duoprisms are considered to be prismatic 4-polytopes. A duoprism constructed from two regular polygons of the same edge length is a uniform duoprism.

A duoprism made of n-polygons and m-polygons is named by prefixing 'duoprism' with the names of the base polygons, for example: a triangular-pentagonal duoprism is the Cartesian product of a triangle and a pentagon.

An alternative, more concise way of specifying a particular duoprism is by prefixing with numbers denoting the base polygons, for example: 3,5-duoprism for the triangular-pentagonal duoprism.

Other alternative names:

  • q-gonal-p-gonal prism
  • q-gonal-p-gonal double prism
  • q-gonal-p-gonal hyperprism

The term duoprism is coined by George Olshevsky, shortened from double prism. John Horton Conway proposed a similar name proprism for product prism, a Cartesian product of two or more polytopes of dimension at least two. The duoprisms are proprisms formed from exactly two polytopes.

Example 16-16 duoprism

Schlegel diagram
Файл:16-16 duoprism.png
Projection from the center of one 16-gonal prism, and all but one of the opposite 16-gonal prisms are shown.
net
Файл:16-16 duoprism net.png
The two sets of 16-gonal prisms are shown. The top and bottom faces of the vertical cylinder are connected when folded together in 4D.

Geometry of 4-dimensional duoprisms

A 4-dimensional uniform duoprism is created by the product of a regular n-sided polygon and a regular m-sided polygon with the same edge length. It is bounded by n m-gonal prisms and m n-gonal prisms. For example, the Cartesian product of a triangle and a hexagon is a duoprism bounded by 6 triangular prisms and 3 hexagonal prisms.

  • When m and n are identical, the resulting duoprism is bounded by 2n identical n-gonal prisms. For example, the Cartesian product of two triangles is a duoprism bounded by 6 triangular prisms.
  • When m and n are identically 4, the resulting duoprism is bounded by 8 square prisms (cubes), and is identical to the tesseract.

The m-gonal prisms are attached to each other via their m-gonal faces, and form a closed loop. Similarly, the n-gonal prisms are attached to each other via their n-gonal faces, and form a second loop perpendicular to the first. These two loops are attached to each other via their square faces, and are mutually perpendicular.

As m and n approach infinity, the corresponding duoprisms approach the duocylinder. As such, duoprisms are useful as non-quadric approximations of the duocylinder.

Nets

Файл:3-3 duoprism net.png
3-3
Файл:4-3 duoprism net.png
3-4
Файл:8-cell net.png
4-4
Файл:5-3 duoprism net.png
3-5
Файл:5-4 duoprism net.png
4-5
Файл:5-5 duoprism net.png
5-5
Файл:6-3 duoprism net.png
3-6
Файл:6-4 duoprism net.png
4-6
Файл:6-5 duoprism net.png
5-6
Файл:6-6 duoprism net.png
6-6
Файл:7-3 duoprism net.png
3-7
Файл:7-4 duoprism net.png
4-7
Файл:7-5 duoprism net.png
5-7
Файл:7-6 duoprism net.png
6-7
Файл:7-7 duoprism net.png
7-7
Файл:8-3 duoprism net.png
3-8
Файл:8-4 duoprism net.png
4-8
Файл:8-5 duoprism net.png
5-8
Файл:8-6 duoprism net.png
6-8
Файл:8-7 duoprism net.png
7-8
Файл:8-8 duoprism net.png
8-8
Файл:9-3 duoprism net.png
3-9
Файл:9-4 duoprism net.png
4-9
Файл:9-5 duoprism net.png
5-9
Файл:9-6 duoprism net.png
6-9
Файл:9-7 duoprism net.png
7-9
Файл:9-8 duoprism net.png
8-9
Файл:9-9 duoprism net.png
9-9
Файл:10-3 duoprism net.png
3-10
Файл:10-4 duoprism net.png
4-10
Файл:10-5 duoprism net.png
5-10
Файл:10-6 duoprism net.png
6-10
Файл:10-7 duoprism net.png
7-10
Файл:10-8 duoprism net.png
8-10
Файл:10-9 duoprism net.png
9-10
Файл:10-10 duoprism net.png
10-10

Perspective projections

A cell-centered perspective projection makes a duoprism look like a torus, with two sets of orthogonal cells, p-gonal and q-gonal prisms.

Schlegel diagrams
Файл:Hexagonal prism skeleton perspective.png Файл:6-6 duoprism.png
6-prism 6-6 duoprism
A hexagonal prism, projected into the plane by perspective, centered on a hexagonal face, looks like a double hexagon connected by (distorted) squares. Similarly a 6-6 duoprism projected into 3D approximates a torus, hexagonal both in plan and in section.

The p-q duoprisms are identical to the q-p duoprisms, but look different in these projections because they are projected in the center of different cells.

Schlegel diagrams
Файл:3-3 duoprism.png
3-3
Файл:3-4 duoprism.png
3-4
Файл:3-5 duoprism.png
3-5
Файл:3-6 duoprism.png
3-6
Файл:3-7 duoprism.png
3-7
Файл:3-8 duoprism.png
3-8
Файл:4-3 duoprism.png
4-3
Файл:4-4 duoprism.png
4-4
Файл:4-5 duoprism.png
4-5
Файл:4-6 duoprism.png
4-6
Файл:4-7 duoprism.png
4-7
Файл:4-8 duoprism.png
4-8
Файл:5-3 duoprism.png
5-3
Файл:5-4 duoprism.png
5-4
Файл:5-5 duoprism.png
5-5
Файл:5-6 duoprism.png
5-6
Файл:5-7 duoprism.png
5-7
Файл:5-8 duoprism.png
5-8
Файл:6-3 duoprism.png
6-3
Файл:6-4 duoprism.png
6-4
Файл:6-5 duoprism.png
6-5
Файл:6-6 duoprism.png
6-6
Файл:6-7 duoprism.png
6-7
Файл:6-8 duoprism.png
6-8
Файл:7-3 duoprism.png
7-3
Файл:7-4 duoprism.png
7-4
Файл:7-5 duoprism.png
7-5
Файл:7-6 duoprism.png
7-6
Файл:7-7 duoprism.png
7-7
Файл:7-8 duoprism.png
7-8
Файл:8-3 duoprism.png
8-3
Файл:8-4 duoprism.png
8-4
Файл:8-5 duoprism.png
8-5
Файл:8-6 duoprism.png
8-6
Файл:8-7 duoprism.png
8-7
Файл:8-8 duoprism.png
8-8

Orthogonal projections

Vertex-centered orthogonal projections of p-p duoprisms project into [2n] symmetry for odd degrees, and [n] for even degrees. There are n vertices projected into the center. For 4,4, it represents the A3 Coxeter plane of the tesseract. The 5,5 projection is identical to the 3D rhombic triacontahedron.

Orthogonal projection wireframes of p-p duoprisms
Odd
3-3 5-5 7-7 9-9
Файл:3-3 duoprism ortho-dih3.png Файл:3-3 duoprism-isotoxal.svg Файл:3-3 duoprism ortho-Dih3.png Файл:5-5 duoprism ortho-5.png Файл:5-5 duoprism-isotoxal.svg Файл:5-5 duoprism ortho-Dih5.png Файл:7-7 duopism ortho-7.png Файл:7-7 duoprism-isotoxal.svg Файл:7-7 duoprism ortho-Dih7.png Файл:9-9 duoprism-ortho-9.png Файл:9-9 duoprism-isotoxal.svg Файл:9-9 duoprism ortho-Dih9.png
[3] [6] [5] [10] [7] [14] [9] [18]
Even
4-4 (tesseract) 6-6 8-8 10-10
Файл:4-cube t0 A3.svg Файл:4-4 duoprism-isotoxal.svg Файл:4-cube t0.svg Файл:6-6 duoprism ortho-Dih6.png Файл:6-6 duoprism-isotoxal.svg Файл:6-6 duoprism ortho-3.png Файл:8-8 duoprism ortho-Dih8.png Файл:8-8 duoprism-isotoxal.svg Файл:8-8 duoprism ortho-3.png Файл:10-10 duoprism ortho-Dih10.png Файл:10-10 duoprism-isotoxal.svg Файл:10-10 duoprism ortho-3.png
[4] [8] [6] [12] [8] [16] [10] [20]

Related polytopes

Файл:Duocylinder ridge animated.gif
A stereographic projection of a rotating duocylinder, divided into a checkerboard surface of squares from the {4,4|n} skew polyhedron

The regular skew polyhedron, {4,4|n}, exists in 4-space as the n2 square faces of a n-n duoprism, using all 2n2 edges and n2 vertices. The 2n n-gonal faces can be seen as removed. (skew polyhedra can be seen in the same way by a n-m duoprism, but these are not regular.)

Duoantiprism

Файл:Snub p2q verf.png
p-q duoantiprism vertex figure, a gyrobifastigium
Файл:Great duoantiprism.png
Great duoantiprism, stereographic projection, centred on one pentagrammic crossed-antiprism

Like the antiprisms as alternated prisms, there is a set of 4-dimensional duoantiprisms: 4-polytopes that can be created by an alternation operation applied to a duoprism. The alternated vertices create nonregular tetrahedral cells, except for the special case, the 4-4 duoprism (tesseract) which creates the uniform (and regular) 16-cell. The 16-cell is the only convex uniform duoantiprism.

The duoprisms Шаблон:CDD, t0,1,2,3{p,2,q}, can be alternated into Шаблон:CDD, ht0,1,2,3{p,2,q}, the "duoantiprisms", which cannot be made uniform in general. The only convex uniform solution is the trivial case of p=q=2, which is a lower symmetry construction of the tesseract Шаблон:CDD, t0,1,2,3{2,2,2}, with its alternation as the 16-cell, Шаблон:CDD, s{2}s{2}.

The only nonconvex uniform solution is p=5, q=5/3, ht0,1,2,3{5,2,5/3}, Шаблон:CDD, constructed from 10 pentagonal antiprisms, 10 pentagrammic crossed-antiprisms, and 50 tetrahedra, known as the great duoantiprism (gudap).[2][3]

Ditetragoltriates

Also related are the ditetragoltriates or octagoltriates, formed by taking the octagon (considered to be a ditetragon or a truncated square) to a p-gon. The octagon of a p-gon can be clearly defined if one assumes that the octagon is the convex hull of two perpendicular rectangles; then the p-gonal ditetragoltriate is the convex hull of two p-p duoprisms (where the p-gons are similar but not congruent, having different sizes) in perpendicular orientations. The resulting polychoron is isogonal and has 2p p-gonal prisms and p2 rectangular trapezoprisms (a cube with D2d symmetry) but cannot be made uniform. The vertex figure is a triangular bipyramid.

Double antiprismoids

Like the duoantiprisms as alternated duoprisms, there is a set of p-gonal double antiprismoids created by alternating the 2p-gonal ditetragoltriates, creating p-gonal antiprisms and tetrahedra while reinterpreting the non-corealmic triangular bipyramidal spaces as two tetrahedra. The resulting figure is generally not uniform except for two cases: the grand antiprism and its conjugate, the pentagrammic double antiprismoid (with p = 5 and 5/3 respectively), represented as the alternation of a decagonal or decagrammic ditetragoltriate. The vertex figure is a variant of the sphenocorona.

k_22 polytopes

The 3-3 duoprism, -122, is first in a dimensional series of uniform polytopes, expressed by Coxeter as k22 series. The 3-3 duoprism is the vertex figure for the second, the birectified 5-simplex. The fourth figure is a Euclidean honeycomb, 222, and the final is a paracompact hyperbolic honeycomb, 322, with Coxeter group [32,2,3], <math>{\bar{T}}_7</math>. Each progressive uniform polytope is constructed from the previous as its vertex figure. Шаблон:K 22 polytopes

See also

Notes

Шаблон:Reflist

References

  • Regular Polytopes, H. S. M. Coxeter, Dover Publications, Inc., 1973, New York, p. 124.
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, Шаблон:ISBN (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues)
    • Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, Шаблон:ISBN (Chapter 26)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

  1. The Fourth Dimension Simply Explained, Henry P. Manning, Munn & Company, 1910, New York. Available from the University of Virginia library. Also accessible online: The Fourth Dimension Simply Explained—contains a description of duoprisms (double prisms) and duocylinders (double cylinders). Googlebook
  2. Jonathan Bowers - Miscellaneous Uniform Polychora 965. Gudap
  3. http://www.polychora.com/12GudapsMovie.gif Шаблон:Webarchive Animation of cross sections