Английская Википедия:Earth trojan
Шаблон:Short description Шаблон:Multiple image
An Earth trojan is an asteroid that orbits the Sun in the vicinity of the Earth–Sun Lagrangian points Шаблон:L4 (leading 60°) or Шаблон:L5 (trailing 60°), thus having an orbit similar to Earth's. Only two Earth trojans have so far been discovered. The name "trojan" was first used in 1906 for the Jupiter trojans, the asteroids that were observed near the Lagrangian points of Jupiter's orbit.
Members
Шаблон:L4 (leading)
- Шаблон:Mpl: A 300-metre diameter asteroid, discovered using the Wide-field Infrared Survey Explorer (WISE) satellite in January 2010.[1][2][3]
- Шаблон:Mpl: Discovered by the Pan-STARRS survey in December 2020 and later recognised as an Earth trojan in January 2021.[4] It is 1.2 km in diameter.
Шаблон:L5 (trailing)
- No known objects are currently thought to be Шаблон:L5 trojans of Earth.
Searches
An Earth-based search for Шаблон:L5 objects was conducted in 1994, covering 0.35 square degrees of sky, under poor observing conditions.[5] That search failed to detect any objects:
- "The limiting sensitivity of this search was magnitude ~22.8, corresponding to C-type asteroids ~350 m in diameter, or S-type asteroids ~175 m in diameter."[5]
In February 2017, the OSIRIS-REx spacecraft performed a search from within the Шаблон:L4 region on its way to asteroid Bennu.[6] No additional Earth trojans were discovered.[7]
In April 2017, the Hayabusa2 spacecraft searched the Шаблон:L5 region while proceeding to asteroid Ryugu,[8] but did not find any asteroids there.[9]
Significance
The orbits of any Earth trojans could make them less energetically costly to reach than the Moon, even though they will be hundreds of times more distant. Such asteroids could one day be useful as sources of elements that are rare near Earth's surface. On Earth, siderophiles such as iridium are difficult to find, having largely sunk to the core of the planet shortly after its formation.
A small asteroid could be a rich source of such elements even if its overall composition is similar to Earth's; because of their small size, such bodies would lose heat much more rapidly than a planet once they had formed, and so would not have melted, a prerequisite for differentiation (even if they differentiated, the core would still be within reach). Their weak gravitational fields also would have inhibited significant separation of denser and lighter material; a mass the size of Шаблон:Mp would exert a surface gravitational force of less than 0.00005 times that of Earth (although the asteroid's rotation could cause separation).
Giant-impact hypothesis
A hypothetical planet-sized Earth trojan the size of Mars, given the name Theia, is thought by proponents of the giant-impact hypothesis to be the origin of the Moon. The hypothesis states that the Moon formed after Earth and Theia collided,[10] showering material from the two planets into space. This material eventually accreted around Earth and into a single orbiting body, the Moon.[11]
At the same time, material from Theia mixed and combined with Earth's mantle and core. Supporters of the giant-impact hypothesis theorise that Earth's large core in relation to its overall volume is as a result of this combination.
Continuing interest in near-Earth asteroids
Astronomy continues to retain interest in the subject. A publication[12] describes these reasons thus: Шаблон:Blockquote
Other companions of Earth
Several other small objects have been found on an orbital path associated with Earth. Although these objects are in 1:1 orbital resonance, they are not Earth trojans, because they do not librate around a definite Sun–Earth Lagrangian point, neither Шаблон:L4 nor Шаблон:L5.
Earth has another noted companion, asteroid 3753 Cruithne. About 5 km across, it has a peculiar type of orbital resonance called an overlapping horseshoe, and is probably only a temporary liaison.[13]
469219 Kamoʻoalewa, an asteroid discovered on 27 April 2016, is possibly the most stable quasi-satellite of Earth.[14]
Шаблон:Known and suspected companions of Earth
Gallery
See also
- 2003 YN107
- 2006 RH120
- 3753 Cruithne
- 6Q0B44E
- Claimed moons of Earth
- Kordylewski cloud
- Natural satellite
- Quasi-satellite
- Theia / giant-impact hypothesis
References
Шаблон:Asteroids Шаблон:Small Solar System bodies Шаблон:Solar System Шаблон:Portal bar
- ↑ Шаблон:Cite magazine
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite press release
- ↑ Шаблон:Cite journal
- ↑ 5,0 5,1 Шаблон:Cite journal Received 24 November 1997; revised 13 April 1998.
- ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокosirisrex
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокosirisrexresults
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокhayabusa2
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокhayabusa2ms
не указан текст - ↑ Шаблон:Cite news
- ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокTheiaHypothesis
не указан текст - ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite news