Английская Википедия:Equation xy = yx

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:Plot of x^y = y^x.svg
Graph of Шаблон:Math. The line and curve intersect at (e, e).

In general, exponentiation fails to be commutative. However, the equation <math>x^y = y^x</math> has solutions, such as <math>x=2,\ y=4.</math>[1]

History

The equation <math>x^y=y^x</math> is mentioned in a letter of Bernoulli to Goldbach (29 June 1728[2]). The letter contains a statement that when <math>x\ne y,</math> the only solutions in natural numbers are <math>(2, 4)</math> and <math>(4, 2),</math> although there are infinitely many solutions in rational numbers, such as <math>(\tfrac{27}{8}, \tfrac{9}{4})</math> and <math>(\tfrac{9}{4}, \tfrac{27}{8})</math>.[3][4] The reply by Goldbach (31 January 1729[2]) contains a general solution of the equation, obtained by substituting <math>y=vx.</math>[3] A similar solution was found by Euler.[4]

J. van Hengel pointed out that if <math>r, n</math> are positive integers with <math>r \geq 3</math>, then <math>r^{r+n} > (r+n)^r;</math> therefore it is enough to consider possibilities <math>x = 1</math> and <math>x = 2</math> in order to find solutions in natural numbers.[4][5]

The problem was discussed in a number of publications.[2][3][4] In 1960, the equation was among the questions on the William Lowell Putnam Competition,[6][7] which prompted Alvin Hausner to extend results to algebraic number fields.[3][8]

Positive real solutions

Main source:[1]

Explicit form

An infinite set of trivial solutions in positive real numbers is given by <math>x = y.</math> Nontrivial solutions can be written explicitly using the Lambert W function. The idea is to write the equation as <math>ae^b = c</math> and try to match <math>a</math> and <math>b</math> by multiplying and raising both sides by the same value. Then apply the definition of the Lambert W function <math>a'e^{a'} = c' \Rightarrow a' = W(c')</math> to isolate the desired variable.

<math>\begin{align}

y^x &= x^y = \exp\left(y\ln x\right) & \\ y^x \exp\left(-y\ln x\right) &= 1 & \left(\mbox{multiply by } \exp\left(-y\ln x\right)\right) \\ y\exp\left(-y\frac{\ln x}{x}\right) &= 1 & \left(\mbox{raise by } 1/x\right) \\ -y\frac{\ln x}{x}\exp\left(-y\frac{\ln x}{x}\right) &= \frac{-\ln x}{x} & \left(\mbox{multiply by } \frac{-\ln x}{x}\right) \end{align}</math>

<math>\Rightarrow -y\frac{\ln x}{x} = W\left(\frac{-\ln x}{x}\right)</math>
<math>\Rightarrow y = \frac{-x}{\ln x}\cdot W\left(\frac{-\ln x}{x}\right) = \exp\left(-W\left(\frac{-\ln x}{x}\right)\right)</math>

Where in the last step we used the identity <math>W(x)/x = \exp(-W(x))</math>.

Here we split the solution into the two branches of the Lambert W function and focus on each interval of interest, applying the identities:

<math>\begin{align}

W_0\left(\frac{-\ln x}{x}\right) &= -\ln x \quad&\text{for } &0 < x \le e, \\ W_{-1}\left(\frac{-\ln x}{x}\right) &= -\ln x \quad&\text{for } &x \ge e. \end{align}</math>

  • <math>0 < x \le 1</math>:
<math>\Rightarrow \frac{-\ln x}{x} \ge 0</math>
<math>\begin{align}\Rightarrow y &= \exp\left(-W_0\left(\frac{-\ln x}{x}\right)\right) \\
&= \exp\left(-(-\ln x)\right) \\
&= x \end{align}</math>
  • <math>1 < x < e</math>:
<math>\Rightarrow \frac{-1}{e} < \frac{-\ln x}{x} < 0</math>
<math>\Rightarrow y = \begin{cases}

\exp\left(-W_0\left(\frac{-\ln x}{x}\right)\right) = x \\ \exp\left(-W_{-1}\left(\frac{-\ln x}{x}\right)\right) \end{cases}</math>

  • <math>x = e</math>:
<math>\Rightarrow \frac{-\ln x}{x} = \frac{-1}{e}</math>
<math>\Rightarrow y = \begin{cases}

\exp\left(-W_0\left(\frac{-\ln x}{x}\right)\right) = x \\ \exp\left(-W_{-1}\left(\frac{-\ln x}{x}\right)\right) = x \end{cases}</math>

  • <math>x > e</math>:
<math>\Rightarrow \frac{-1}{e} < \frac{-\ln x}{x} < 0</math>
<math>\Rightarrow y = \begin{cases}

\exp\left(-W_0\left(\frac{-\ln x}{x}\right)\right) \\ \exp\left(-W_{-1}\left(\frac{-\ln x}{x}\right)\right) = x \end{cases}</math>

Hence the non-trivial solutions are:

Шаблон:Equation box 1

Parametric form

Nontrivial solutions can be more easily found by assuming <math>x \ne y</math> and letting <math>y = vx.</math> Then

<math>(vx)^x = x^{vx} = (x^v)^x.</math>

Raising both sides to the power <math>\tfrac{1}{x}</math> and dividing by <math>x</math>, we get

<math>v = x^{v-1}.</math>

Then nontrivial solutions in positive real numbers are expressed as the parametric equation

Шаблон:Equation box 1

The full solution thus is <math>(y=x) \cup \left(v^{1/(v-1)},v^{v/(v-1)}\right) \text{ for } v > 0, v \neq 1 .</math>

Based on the above solution, the derivative <math>dy/dx</math> is <math>1</math> for the <math>(x,y)</math> pairs on the line <math>y=x,</math> and for the other <math>(x,y)</math> pairs can be found by <math>(dy/dv)/(dx/dv),</math> which straightforward calculus gives as:

<math>\frac{dy}{dx} = v^2\left(\frac{v-1-\ln v}{v-1-v\ln v}\right)</math>

for <math>v > 0</math> and <math>v \neq 1.</math>

Setting <math>v=2</math> or <math>v=\tfrac{1}{2}</math> generates the nontrivial solution in positive integers, <math>4^2=2^4.</math>

Other pairs consisting of algebraic numbers exist, such as <math>\sqrt 3</math> and <math>3\sqrt 3</math>, as well as <math>\sqrt[3]4</math> and <math>4\sqrt[3]4</math>.

The parameterization above leads to a geometric property of this curve. It can be shown that <math>x^y = y^x</math> describes the isocline curve where power functions of the form <math>x^v</math> have slope <math>v^2</math> for some positive real choice of <math>v\neq 1</math>. For example, <math>x^8=y</math> has a slope of <math>8^2</math> at <math>(\sqrt[7]{8}, \sqrt[7]{8}^8),</math> which is also a point on the curve <math>x^y=y^x.</math>

The trivial and non-trivial solutions intersect when <math>v = 1</math>. The equations above cannot be evaluated directly at <math>v = 1</math>, but we can take the limit as <math>v\to 1</math>. This is most conveniently done by substituting <math>v = 1 + 1/n</math> and letting <math>n\to\infty</math>, so

<math>x = \lim_{v\to 1}v^{1/(v-1)} = \lim_{n\to\infty}\left(1+\frac 1n\right)^n = e.</math>

Thus, the line <math>y = x</math> and the curve for <math>x^y-y^x = 0,\,\, y \ne x</math> intersect at Шаблон:Math.

As <math>x \to \infty</math>, the nontrivial solution asymptotes to the line <math>y = 1</math>. A more complete asymptotic form is

<math>y = 1 + \frac{\ln x}{x} + \frac{3}{2} \frac{(\ln x)^2}{x^2} + \cdots.</math>

Other real solutions

An infinite set of discrete real solutions with at least one of <math>x</math> and <math>y</math> negative also exist. These are provided by the above parameterization when the values generated are real. For example, <math>x=\frac{1}{\sqrt[3]{-2}}</math>, <math>y=\frac{-2}{\sqrt[3]{-2}}</math> is a solution (using the real cube root of <math>-2</math>). Similarly an infinite set of discrete solutions is given by the trivial solution <math>y=x</math> for <math>x<0</math> when <math>x^x</math> is real; for example <math>x=y=-1</math>.

Similar graphs

Equation Шаблон:Math

The equation <math>\sqrt[x]y = \sqrt[y]x</math> produces a graph where the line and curve intersect at <math>1/e</math>. The curve also terminates at (0, 1) and (1, 0), instead of continuing on to infinity.

The curved section can be written explicitly as

<math>y=e^{W_0(\ln(x^x))} \quad \mathrm{for} \quad 0<x<1/e,</math>

<math>y=e^{W_{-1}(\ln(x^x))} \quad \mathrm{for} \quad 1/e<x<1.</math>

This equation describes the isocline curve where power functions have slope 1, analogous to the geometric property of <math>x^y = y^x</math> described above.

The equation is equivalent to <math>y^y=x^x,</math> as can be seen by raising both sides to the power <math>xy.</math> Equivalently, this can also be shown to demonstrate that the equation <math>\sqrt[y]{y}=\sqrt[x]{x}</math> is equivalent to <math>x^y = y^x</math>.

Equation Шаблон:Math

The equation <math>\log_x(y) = \log_y(x)</math> produces a graph where the curve and line intersect at (1, 1). The curve becomes asymptotic to 0, as opposed to 1; it is, in fact, the positive section of y = 1/x.

References

Шаблон:Reflist

External links

  1. 1,0 1,1 Ошибка цитирования Неверный тег <ref>; для сносок loczy не указан текст
  2. 2,0 2,1 2,2 Ошибка цитирования Неверный тег <ref>; для сносок Singmaster не указан текст
  3. 3,0 3,1 3,2 3,3 Ошибка цитирования Неверный тег <ref>; для сносок Sved1990 не указан текст
  4. 4,0 4,1 4,2 4,3 Ошибка цитирования Неверный тег <ref>; для сносок Dickson не указан текст
  5. Ошибка цитирования Неверный тег <ref>; для сносок Hengel1888 не указан текст
  6. Ошибка цитирования Неверный тег <ref>; для сносок wlp не указан текст
  7. Шаблон:Cite web
  8. Шаблон:Cite journal