Английская Википедия:Esakia duality

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In mathematics, Esakia duality is the dual equivalence between the category of Heyting algebras and the category of Esakia spaces. Esakia duality provides an order-topological representation of Heyting algebras via Esakia spaces.

Let Esa denote the category of Esakia spaces and Esakia morphisms.

Let Шаблон:Math be a Heyting algebra, Шаблон:Math denote the set of prime filters of Шаблон:Math, and Шаблон:Math denote set-theoretic inclusion on the prime filters of Шаблон:Math. Also, for each Шаблон:Math, let Шаблон:Math}, and let Шаблон:Math denote the topology on Шаблон:Math generated by Шаблон:Math}.

Theorem:[1] Шаблон:Math is an Esakia space, called the Esakia dual of Шаблон:Math. Moreover, Шаблон:Math is a Heyting algebra isomorphism from Шаблон:Math onto the Heyting algebra of all clopen up-sets of Шаблон:Math. Furthermore, each Esakia space is isomorphic in Esa to the Esakia dual of some Heyting algebra.

This representation of Heyting algebras by means of Esakia spaces is functorial and yields a dual equivalence between the categories

and

  • Esa of Esakia spaces and Esakia morphisms.

Theorem:[1][2][3] HA is dually equivalent to Esa.

The duality can also be expressed in terms of spectral spaces, where it says that the category of Heyting algebras is dually equivalent to the category of Heyting spaces.[4]

See also

References

Шаблон:Reflist