Английская Википедия:Euclid's orchard

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Distinguish

Файл:Euclid's Orchard.svg
Plan view of one corner of Euclid's orchard, in which trees are labelled with the x co-ordinate of their projection on the plane Шаблон:Math.

In mathematics, informally speaking, Euclid's orchard is an array of one-dimensional "trees" of unit height planted at the lattice points in one quadrant of a square lattice.[1] More formally, Euclid's orchard is the set of line segments from Шаблон:Math to Шаблон:Math, where Шаблон:Mvar and Шаблон:Mvar are positive integers.

Файл:Euclid orchard trimetric.svg
One corner of Euclid's orchard, blue trees visible from the origin
Файл:Euclid's Orchard (perspective).svg
Perspective view of Euclid's orchard from the origin. Red trees denote rows two off the main diagonal.

The trees visible from the origin are those at lattice points Шаблон:Math, where Шаблон:Mvar and Шаблон:Mvar are coprime, i.e., where the fraction Шаблон:Math is in reduced form. The name Euclid's orchard is derived from the Euclidean algorithm.

If the orchard is projected relative to the origin onto the plane Шаблон:Math (or, equivalently, drawn in perspective from a viewpoint at the origin) the tops of the trees form a graph of Thomae's function. The point Шаблон:Math projects to

<math>\left ( \frac {x}{x+y}, \frac {y}{x+y}, \frac {1}{x+y} \right ).</math>

The solution to the Basel problem can be used to show that the proportion of points in the Шаблон:Tmath grid that have trees on them is approximately <math>\tfrac{6}{\pi^2}</math> and that the error of this approximation goes to zero in the limit as Шаблон:Mvar goes to infinity.[2]

See also

References

Шаблон:Reflist

External links


Шаблон:Math-hist-stub