Английская Википедия:Euclidean tilings by convex regular polygons

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Example periodic tilings
Файл:1-uniform n1.svg
A regular tiling has one type of regular face.
Файл:1-uniform n2.svg
A semiregular or uniform tiling has one type of vertex, but two or more types of faces.
Файл:2-uniform n1.svg
A k-uniform tiling has k types of vertices, and two or more types of regular faces.
Файл:Distorted truncated square tiling.svg
A non-edge-to-edge tiling can have different-sized regular faces.

Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Шаблон:Lang (Latin: The Harmony of the World, 1619).

Notation of Euclidean tilings

Euclidean tilings are usually named after Cundy & Rollett’s notation.[1] This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 36; 36; 34.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 36; 36 (both of different transitivity class), or (36)2, tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided polygons (triangles). With a final vertex 34.6, 4 more contiguous equilateral triangles and a single regular hexagon.

However, this notation has two main problems related to ambiguous conformation and uniqueness [2] First, when it comes to k-uniform tilings, the notation does not explain the relationships between the vertices. This makes it impossible to generate a covered plane given the notation alone. And second, some tessellations have the same nomenclature, they are very similar but it can be noticed that the relative positions of the hexagons are different. Therefore, the second problem is that this nomenclature is not unique for each tessellation.

In order to solve those problems, GomJau-Hogg’s notation [3] is a slightly modified version of the research and notation presented in 2012,[2] about the generation and nomenclature of tessellations and double-layer grids. Antwerp v3.0,[4] a free online application, allows for the infinite generation of regular polygon tilings through a set of shape placement stages and iterative rotation and reflection operations, obtained directly from the GomJau-Hogg’s notation.

Regular tilings

Following Grünbaum and Shephard (section 1.3), a tiling is said to be regular if the symmetry group of the tiling acts transitively on the flags of the tiling, where a flag is a triple consisting of a mutually incident vertex, edge and tile of the tiling. This means that, for every pair of flags, there is a symmetry operation mapping the first flag to the second. This is equivalent to the tiling being an edge-to-edge tiling by congruent regular polygons. There must be six equilateral triangles, four squares or three regular hexagons at a vertex, yielding the three regular tessellations.

Regular tilings (3)
p6m, *632 p4m, *442
Файл:1-uniform n11.svg Файл:1-uniform n1.svg Файл:1-uniform n5.svg
Файл:Vertex type 3-3-3-3-3-3.svg
C&R: 36
GJ-H: 3/m30/r(h2)
(t = 1, e = 1)
Файл:Vertex type 6-6-6.svg
C&R: 63
GJ-H: 6/m30/r(h1)
(t = 1, e = 1)
Файл:Vertex type 4-4-4-4.svg
C&R: 44
GJ-H: 4/m45/r(h1)
(t = 1, e = 1)

C&R: Cundy & Rollet's notation
GJ-H: Notation of GomJau-Hogg

Archimedean, uniform or semiregular tilings

Шаблон:Further Vertex-transitivity means that for every pair of vertices there is a symmetry operation mapping the first vertex to the second.[5]

If the requirement of flag-transitivity is relaxed to one of vertex-transitivity, while the condition that the tiling is edge-to-edge is kept, there are eight additional tilings possible, known as Archimedean, uniform or semiregular tilings. Note that there are two mirror image (enantiomorphic or chiral) forms of 34.6 (snub hexagonal) tiling, only one of which is shown in the following table. All other regular and semiregular tilings are achiral.

Uniform tilings (8)
p6m, *632
Файл:1-uniform n4.svg

Файл:Vertex type 3-12-12.svg
C&R: 3.122
GJ-H: 12-3/m30/r(h3)
(t = 2, e = 2)
t{6,3}
Файл:1-uniform n6.svg

Файл:Vertex type 3-4-6-4.svg
C&R: 3.4.6.4
GJ-H: 6-4-3/m30/r(c2)
(t = 3, e = 2)
rr{3,6}
Файл:1-uniform n3.svg

Файл:Vertex type 4-6-12.svg
C&R: 4.6.12
GJ-H: 12-6,4/m30/r(c2)
(t = 3, e = 3)
tr{3,6}
Файл:1-uniform n7.svg

Файл:Vertex type 3-6-3-6.svg
C&R: (3.6)2
GJ-H: 6-3-6/m30/r(v4)
(t = 2, e = 1)
r{6,3}
Файл:1-uniform n2.svg

Файл:Vertex type 4-8-8.svg
C&R: 4.82
GJ-H: 8-4/m90/r(h4)
(t = 2, e = 2)
t{4,4}
Файл:1-uniform n9.svg

Файл:Vertex type 3-3-4-3-4.svg
C&R: 32.4.3.4
GJ-H: 4-3-3,4/r90/r(h2)
(t = 2, e = 2)
s{4,4}
Файл:1-uniform n8.svg

Файл:Vertex type 3-3-3-4-4.svg
C&R: 33.42
GJ-H: 4-3/m90/r(h2)
(t = 2, e = 3)
{3,6}:e
Файл:1-uniform n10.svg

Файл:Vertex type 3-3-3-3-6.svg
C&R: 34.6
GJ-H: 6-3-3/r60/r(h5)
(t = 3, e = 3)
sr{3,6}

C&R: Cundy & Rollet's notation
GJ-H: Notation of GomJau-Hogg

Grünbaum and Shephard distinguish the description of these tilings as Archimedean as referring only to the local property of the arrangement of tiles around each vertex being the same, and that as uniform as referring to the global property of vertex-transitivity. Though these yield the same set of tilings in the plane, in other spaces there are Archimedean tilings which are not uniform.

Plane-vertex tilings

There are 17 combinations of regular convex polygons that form 21 types of plane-vertex tilings.[6][7] Polygons in these meet at a point with no gap or overlap. Listing by their vertex figures, one has 6 polygons, three have 5 polygons, seven have 4 polygons, and ten have 3 polygons.[8]

As detailed in the sections above, three of them can make regular tilings (63, 44, 36), and eight more can make semiregular or archimedean tilings, (3.12.12, 4.6.12, 4.8.8, (3.6)2, 3.4.6.4, 3.3.4.3.4, 3.3.3.4.4, 3.3.3.3.6). Four of them can exist in higher k-uniform tilings (3.3.4.12, 3.4.3.12, 3.3.6.6, 3.4.4.6), while six can not be used to completely tile the plane by regular polygons with no gaps or overlaps - they only tessellate space entirely when irregular polygons are included (3.7.42, 3.8.24, 3.9.18, 3.10.15, 4.5.20, 5.5.10).[9]

The plane-vertex tilings
6 Файл:Regular polygons meeting at vertex 6 3 3 3 3 3 3.svg
36
5 Файл:Regular polygons meeting at vertex 5 3 3 4 3 4.svg
3.3.4.3.4
Файл:Regular polygons meeting at vertex 5 3 3 3 4 4.svg
3.3.3.4.4
Файл:Regular polygons meeting at vertex 5 3 3 3 3 6.svg
3.3.3.3.6
4 Файл:Regular polygons meeting at vertex 4 3 3 4 12.svg
3.3.4.12
Файл:Regular polygons meeting at vertex 4 3 4 3 12.svg
3.4.3.12
Файл:Regular polygons meeting at vertex 4 3 3 6 6.svg
3.3.6.6
Файл:Regular polygons meeting at vertex 4 3 6 3 6.svg
(3.6)2
Файл:Regular polygons meeting at vertex 4 3 4 4 6.svg
3.4.4.6
Файл:Regular polygons meeting at vertex 4 3 4 6 4.svg
3.4.6.4
Файл:Regular polygons meeting at vertex 4 4 4 4 4.svg
44
3 Файл:Regular polygons meeting at vertex 3 3 7 42.svg
3.7.42
Файл:Regular polygons meeting at vertex 3 3 8 24.svg
3.8.24
Файл:Regular polygons meeting at vertex 3 3 9 18.svg
3.9.18
Файл:Regular polygons meeting at vertex 3 3 10 15.svg
3.10.15
Файл:Regular polygons meeting at vertex 3 3 12 12.svg
3.12.12
Файл:Regular polygons meeting at vertex 3 4 5 20.svg
4.5.20
Файл:Regular polygons meeting at vertex 3 4 6 12.svg
4.6.12
Файл:Regular polygons meeting at vertex 3 4 8 8.svg
4.8.8
Файл:Regular polygons meeting at vertex 3 5 5 10.svg
5.5.10
Файл:Regular polygons meeting at vertex 3 6 6 6.svg
63

k-uniform tilings

Such periodic tilings may be classified by the number of orbits of vertices, edges and tiles. If there are Шаблон:Mvar orbits of vertices, a tiling is known as Шаблон:Mvar-uniform or Шаблон:Mvar-isogonal; if there are Шаблон:Mvar orbits of tiles, as Шаблон:Mvar-isohedral; if there are Шаблон:Mvar orbits of edges, as Шаблон:Mvar-isotoxal.

k-uniform tilings with the same vertex figures can be further identified by their wallpaper group symmetry.

1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings. Each can be grouped by the number m of distinct vertex figures, which are also called m-Archimedean tilings.[10]

Finally, if the number of types of vertices is the same as the uniformity (m = k below), then the tiling is said to be Krotenheerdt. In general, the uniformity is greater than or equal to the number of types of vertices (mk), as different types of vertices necessarily have different orbits, but not vice versa. Setting m = n = k, there are 11 such tilings for n = 1; 20 such tilings for n = 2; 39 such tilings for n = 3; 33 such tilings for n = 4; 15 such tilings for n = 5; 10 such tilings for n = 6; and 7 such tilings for n = 7.

Below is an example of a 3-unifom tiling:

Colored 3-uniform tiling #57 of 61
Файл:3-uniform 57.svg
by sides, yellow triangles, red squares (by polygons)
Файл:3-uniform n57.svg
by 4-isohedral positions, 3 shaded colors of triangles (by orbits)

Шаблон:Clr

k-uniform, m-Archimedean tiling counts [11][12]
m-Archimedean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥ 15 Total
k-uniform 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11
2 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20
3 0 22 39 0 0 0 0 0 0 0 0 0 0 0 0 61
4 0 33 85 33 0 0 0 0 0 0 0 0 0 0 0 151
5 0 74 149 94 15 0 0 0 0 0 0 0 0 0 0 332
6 0 100 284 187 92 10 0 0 0 0 0 0 0 0 0 673
7 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 7 0 0 0 0 0 0 0 0 1472
8 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 20 0 0 0 0 0 0 0 0 2850
9 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 8 0 0 0 0 0 0 0 5960
10 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 27 0 0 0 0 0 0 0 11866
11 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 1 0 0 0 0 0 0 24459
12 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 0 0 0 0 0 0 49794
13 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 0 0 0 103082
14 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 0 0 Шаблон:Dunno
≥ 15 0 Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno Шаблон:Dunno 0 Шаблон:Dunno
Total 11 0

Шаблон:Clr

2-uniform tilings

There are twenty (20) 2-uniform tilings of the Euclidean plane. (also called 2-isogonal tilings or demiregular tilings) Шаблон:R [13][14] Vertex types are listed for each. If two tilings share the same two vertex types, they are given subscripts 1,2.

2-uniform tilings (20)
p6m, *632 p4m, *442
Файл:2-uniform n18.svg
[36; 32.4.3.4]
3-4-3/m30/r(c3)
(t = 3, e = 3)
Файл:2-uniform n9.svg
[3.4.6.4; 32.4.3.4]
6-4-3,3/m30/r(h1)
(t = 4, e = 4)
Файл:2-uniform n8.svg
[3.4.6.4; 33.42]
6-4-3-3/m30/r(h5)
(t = 4, e = 4)
Файл:2-uniform n5.svg
[3.4.6.4; 3.42.6]
6-4-3,4-6/m30/r(c4)
(t = 5, e = 5)
Файл:2-uniform n1.svg
[4.6.12; 3.4.6.4]
12-4,6-3/m30/r(c3)
(t = 4, e = 4)
Файл:2-uniform n13.svg
[36; 32.4.12]
12-3,4-3/m30/r(c3)
(t = 4, e = 4)
Файл:2-uniform n2.svg
[3.12.12; 3.4.3.12]
12-0,3,3-0,4/m45/m(h1)
(t = 3, e = 3)
p6m, *632 p6, 632 p6, 632 cmm, 2*22 pmm, *2222 cmm, 2*22 pmm, *2222
Файл:2-uniform n10.svg
[36; 32.62]
3-6/m30/r(c2)
(t = 2, e = 3)
Файл:2-uniform n19.svg
[36; 34.6]1
6-3,3-3/m30/r(h1)
(t = 3, e = 3)
Файл:2-uniform n20.svg
[36; 34.6]2
6-3-3,3-3/r60/r(h8)
(t = 5, e = 7)
Файл:2-uniform n12.svg
[32.62; 34.6]
6-3/m90/r(h1)
(t = 2, e = 4)
Файл:2-uniform n11.svg
[3.6.3.6; 32.62]
6-3,6/m90/r(h3)
(t = 2, e = 3)
Файл:2-uniform n6.svg
[3.42.6; 3.6.3.6]2
6-3,4-6-3,4-6,4/m90/r(c6)
(t = 3, e = 4)
Файл:2-uniform n7.svg
[3.42.6; 3.6.3.6]1
6-3,4/m90/r(h4)
(t = 4, e = 4)
p4g, 4*2 pgg, 22× cmm, 2*22 cmm, 2*22 pmm, *2222 cmm, 2*22
Файл:2-uniform n16.svg
[33.42; 32.4.3.4]1
4-3,3-4,3/r90/m(h3)
(t = 4, e = 5)
Файл:2-uniform n17.png
[33.42; 32.4.3.4]2
4-3,3,3-4,3/r(c2)/r(h13)/r(h45)
(t = 3, e = 6)
Файл:2-uniform n4.svg
[44; 33.42]1
4-3/m(h4)/m(h3)/r(h2)
(t = 2, e = 4)
Файл:2-uniform n3.svg
[44; 33.42]2
4-4-3-3/m90/r(h3)
(t = 3, e = 5)
Файл:2-uniform n14.svg
[36; 33.42]1
4-3,4-3,3/m90/r(h3)
(t = 3, e = 4)
Файл:2-uniform n15.svg
[36; 33.42]2
4-3-3-3/m90/r(h7)/r(h5)
(t = 4, e = 5)

Higher k-uniform tilings

k-uniform tilings have been enumerated up to 6. There are 673 6-uniform tilings of the Euclidean plane. Brian Galebach's search reproduced Krotenheerdt's list of 10 6-uniform tilings with 6 distinct vertex types, as well as finding 92 of them with 5 vertex types, 187 of them with 4 vertex types, 284 of them with 3 vertex types, and 100 with 2 vertex types.

Fractalizing k-uniform tilings

There are many ways of generating new k-uniform tilings from old k-uniform tilings. For example, notice that the 2-uniform [3.12.12; 3.4.3.12] tiling has a square lattice, the 4(3-1)-uniform [343.12; (3.122)3] tiling has a snub square lattice, and the 5(3-1-1)-uniform [334.12; 343.12; (3.12.12)3] tiling has an elongated triangular lattice. These higher-order uniform tilings use the same lattice but possess greater complexity. The fractalizing basis for theses tilings is as follows:[15]

Triangle Square Hexagon Dissected
Dodecagon
Shape
Файл:The Triangle.svg
Файл:A Square Tile.svg
Файл:A Hexagon Tile.svg
Файл:A Dissected Dodecagon.svg
Fractalizing
Файл:Truncated Hexagonal Fractal Triangle.svg
Файл:Truncated Hexagonal Fractal Square.svg
Файл:Truncated Hexagonal Fractal Hexagon.svg
Файл:Truncated Hexagonal Fractal Dissected Dodecagon.svg

The side lengths are dilated by a factor of <math>2+\sqrt{3}</math>.

This can similarly be done with the truncated trihexagonal tiling as a basis, with corresponding dilation of <math>3+\sqrt{3}</math>.

Triangle Square Hexagon Dissected
Dodecagon
Shape
Файл:The Triangle.svg
Файл:A Square Tile.svg
Файл:A Hexagon Tile.svg
Файл:A Dissected Dodecagon.svg
Fractalizing
Файл:Truncated Trihexagonal Fractal Triangle.svg
Файл:Truncated Trihexagonal Fractal Square.svg
Файл:Truncated Trihexagonal Fractal Hexagon.svg
Файл:Truncated Trihexagonal Fractal Dissected Dodecagon.svg

Fractalizing examples

Truncated Hexagonal Tiling Truncated Trihexagonal Tiling
Fractalizing
Файл:Planar Fractalizing Truncated Hexagonal Tiling II.png
Файл:Planar Tiling Fractalizing the Truncated Trihexagonal Tiling.png

Tilings that are not edge-to-edge

Convex regular polygons can also form plane tilings that are not edge-to-edge. Such tilings can be considered edge-to-edge as nonregular polygons with adjacent colinear edges.

There are seven families of isogonal each family having a real-valued parameter determining the overlap between sides of adjacent tiles or the ratio between the edge lengths of different tiles. Two of the families are generated from shifted square, either progressive or zig-zagging positions. Grünbaum and Shephard call these tilings uniform although it contradicts Coxeter's definition for uniformity which requires edge-to-edge regular polygons.[16] Such isogonal tilings are actually topologically identical to the uniform tilings, with different geometric proportions.

Periodic isogonal tilings by non-edge-to-edge convex regular polygons
1 2 3 4 5 6 7
Файл:Square brick pattern.png
Rows of squares with horizontal offsets
Файл:Half-offset triangular tiling.png
Rows of triangles with horizontal offsets
Файл:Distorted truncated square tiling.svg
A tiling by squares
Файл:Gyrated truncated hexagonal tiling.png
Three hexagons surround each triangle
Файл:Gyrated hexagonal tiling2.png
Six triangles surround every hexagon.
Файл:Trihexagonal tiling unequal2.svg
Three size triangles
cmm (2*22) p2 (2222) cmm (2*22) p4m (*442) p6 (632) p3 (333)
Hexagonal tiling Square tiling Truncated square tiling Truncated hexagonal tiling Hexagonal tiling Trihexagonal tiling

See also

Шаблон:Colbegin

Шаблон:Colend

References

Шаблон:Reflist

External links

Euclidean and general tiling links:

Шаблон:Tessellation