Английская Википедия:Euler integral

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:For In mathematics, there are two types of Euler integral:[1]

  1. The Euler integral of the first kind is the beta function <math display="block">\mathrm{\Beta}(z_1,z_2) = \int_0^1t^{z_1-1}(1-t)^{z_2-1}\,dt = \frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1+z_2)}</math>
  2. The Euler integral of the second kind is the gamma function <math display="block">\Gamma(z) = \int_0^\infty t^{z-1}\,\mathrm e^{-t}\,dt</math>

For positive integers Шаблон:Mvar and Шаблон:Mvar, the two integrals can be expressed in terms of factorials and binomial coefficients: <math display="block">\Beta(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)! } = \frac{n+m}{nm \binom{n+m}{n}} = \left( \frac{1}{n} + \frac{1}{m} \right) \frac{1}{\binom{n+m}{n}}</math> <math display="block">\Gamma(n) = (n-1)! </math>

See also

References

Шаблон:Reflist

External links and references


Шаблон:Sia