Английская Википедия:Exterior derivative

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:No footnotes Шаблон:Calculus

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

If a differential Шаблон:Math-form is thought of as measuring the flux through an infinitesimal Шаблон:Math-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a Шаблон:Math-parallelotope at each point.

Definition

The exterior derivative of a differential form of degree Шаблон:Math (also differential Шаблон:Math-form, or just Шаблон:Math-form for brevity here) is a differential form of degree Шаблон:Math.

If Шаблон:Math is a smooth function (a Шаблон:Math-form), then the exterior derivative of Шаблон:Math is the differential of Шаблон:Math. That is, Шаблон:Math is the unique [[1-form|Шаблон:Math-form]] such that for every smooth vector field Шаблон:Math, Шаблон:Math, where Шаблон:Math is the directional derivative of Шаблон:Math in the direction of Шаблон:Math.

The exterior product of differential forms (denoted with the same symbol Шаблон:Math) is defined as their pointwise exterior product.

There are a variety of equivalent definitions of the exterior derivative of a general Шаблон:Math-form.

In terms of axioms

The exterior derivative is defined to be the unique Шаблон:Math-linear mapping from Шаблон:Math-forms to Шаблон:Math-forms that has the following properties:

  1. Шаблон:Math is the differential of Шаблон:Math for a Шаблон:Math-form Шаблон:Math.
  2. Шаблон:Math for a Шаблон:Math-form Шаблон:Math.
  3. Шаблон:Math where Шаблон:Mvar is a Шаблон:Math-form. That is to say, Шаблон:Math is an antiderivation of degree Шаблон:Math on the exterior algebra of differential forms (see the graded product rule).

The second defining property holds in more generality: Шаблон:Math for any Шаблон:Math-form Шаблон:Mvar; more succinctly, Шаблон:Math. The third defining property implies as a special case that if Шаблон:Math is a function and Шаблон:Mvar is a Шаблон:Math-form, then Шаблон:Math because a function is a Шаблон:Math-form, and scalar multiplication and the exterior product are equivalent when one of the arguments is a scalar.Шаблон:Citation Needed

In terms of local coordinates

Alternatively, one can work entirely in a local coordinate system Шаблон:Math. The coordinate differentials Шаблон:Math form a basis of the space of one-forms, each associated with a coordinate. Given a multi-index Шаблон:Math with Шаблон:Math for Шаблон:Math (and denoting Шаблон:Math with Шаблон:Math), the exterior derivative of a (simple) Шаблон:Math-form

<math>\varphi = g\,dx^I = g\,dx^{i_1}\wedge dx^{i_2}\wedge\cdots\wedge dx^{i_k}</math>

over Шаблон:Math is defined as

<math>d{\varphi} = \frac{\partial g}{\partial x^i} \, dx^i \wedge dx^I</math>

(using the Einstein summation convention). The definition of the exterior derivative is extended linearly to a general Шаблон:Math-form

<math>\omega = f_I \, dx^I,</math>

where each of the components of the multi-index Шаблон:Math run over all the values in Шаблон:Math. Note that whenever Шаблон:Math equals one of the components of the multi-index Шаблон:Math then Шаблон:Math (see Exterior product).

The definition of the exterior derivative in local coordinates follows from the preceding definition in terms of axioms. Indeed, with the Шаблон:Math-form Шаблон:Math as defined above,

<math>\begin{align}
 d{\varphi} &= d\left (g\,dx^{i_1} \wedge \cdots \wedge dx^{i_k} \right ) \\
            &= dg \wedge \left (dx^{i_1} \wedge \cdots \wedge dx^{i_k} \right ) +
                 g\,d\left (dx^{i_1}\wedge \cdots \wedge dx^{i_k} \right ) \\
            &= dg \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k} + g \sum_{p=1}^k (-1)^{p-1} \, dx^{i_1}
                  \wedge \cdots \wedge dx^{i_{p-1}} \wedge d^2x^{i_p} \wedge dx^{i_{p+1}} \wedge \cdots \wedge dx^{i_k} \\
            &= dg \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k} \\
            &= \frac{\partial g}{\partial x^i} \, dx^i \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k} \\

\end{align}</math>

Here, we have interpreted Шаблон:Math as a Шаблон:Math-form, and then applied the properties of the exterior derivative.

This result extends directly to the general Шаблон:Math-form Шаблон:Math as

<math>d\omega = \frac{\partial f_I}{\partial x^i} \, dx^i \wedge dx^I .</math>

In particular, for a Шаблон:Math-form Шаблон:Math, the components of Шаблон:Math in local coordinates are

<math>(d\omega)_{ij} = \partial_i \omega_j - \partial_j \omega_i. </math>

Caution: There are two conventions regarding the meaning of <math>dx^{i_1} \wedge \cdots \wedge dx^{i_k}</math>. Most current authorsШаблон:Fact have the convention that

<math>\left(dx^{i_1} \wedge \cdots \wedge dx^{i_k}\right) \left( \frac{\partial}{\partial x^{i_1}}, \ldots, \frac{\partial}{\partial x^{i_k}} \right) = 1 .</math>

while in older text like Kobayashi and Nomizu or Helgason

<math>\left(dx^{i_1} \wedge \cdots \wedge dx^{i_k}\right) \left( \frac{\partial}{\partial x^{i_1}}, \ldots, \frac{\partial}{\partial x^{i_k}} \right) = \frac{1}{k!} .</math>

In terms of invariant formula

Alternatively, an explicit formula can be given [1] for the exterior derivative of a Шаблон:Math-form Шаблон:Math, when paired with Шаблон:Math arbitrary smooth vector fields Шаблон:Math:

<math>d\omega(V_0, \ldots, V_k) = \sum_i(-1)^{i} d_{{}_{V_i}} ( \omega (V_0, \ldots, \widehat V_i, \ldots,V_k )) + \sum_{i<j}(-1)^{i+j}\omega ([V_i, V_j], V_0, \ldots, \widehat V_i, \ldots, \widehat V_j, \ldots, V_k )</math>

where Шаблон:Math denotes the Lie bracket and a hat denotes the omission of that element:

<math>\omega (V_0, \ldots, \widehat V_i, \ldots, V_k ) = \omega(V_0, \ldots, V_{i-1}, V_{i+1}, \ldots, V_k ).</math>

In particular, when Шаблон:Math is a Шаблон:Math-form we have that Шаблон:Math.

Note: With the conventions of e.g., Kobayashi–Nomizu and Helgason the formula differs by a factor of Шаблон:Math:

<math>\begin{align}
 d\omega(V_0, \ldots, V_k) ={}
   & {1 \over k+1} \sum_i(-1)^i \, d_{{}_{V_i}} ( \omega (V_0, \ldots, \widehat V_i, \ldots,V_k  )) \\
   & {}+ {1 \over k+1}  \sum_{i<j}(-1)^{i+j}\omega([V_i, V_j], V_0, \ldots, \widehat V_i, \ldots, \widehat V_j, \ldots, V_k ).

\end{align}</math>

Examples

Example 1. Consider Шаблон:Math over a Шаблон:Math-form basis Шаблон:Math for a scalar field Шаблон:Math. The exterior derivative is:

<math>\begin{align}
 d\sigma &= du \wedge dx^1 \wedge dx^2 \\
                   &= \left(\sum_{i=1}^n \frac{\partial u}{\partial x^i} \, dx^i\right) \wedge dx^1 \wedge dx^2 \\
                   &= \sum_{i=3}^n \left( \frac{\partial u}{\partial x^i} \, dx^i \wedge dx^1 \wedge dx^2 \right )

\end{align}</math>

The last formula, where summation starts at Шаблон:Math, follows easily from the properties of the exterior product. Namely, Шаблон:Math.

Example 2. Let Шаблон:Math be a Шаблон:Math-form defined over Шаблон:Math. By applying the above formula to each term (consider Шаблон:Math and Шаблон:Math) we have the sum

<math>\begin{align}

d\sigma

   &= \left( \sum_{i=1}^2 \frac{\partial u}{\partial x^i} dx^i \wedge dx \right) + \left( \sum_{i=1}^2 \frac{\partial v}{\partial x^i} \, dx^i \wedge dy \right) \\
   &= \left(\frac{\partial{u}}{\partial{x}} \, dx \wedge dx + \frac{\partial{u}}{\partial{y}} \, dy \wedge dx\right) + \left(\frac{\partial{v}}{\partial{x}} \, dx \wedge dy + \frac{\partial{v}}{\partial{y}} \, dy \wedge dy\right) \\
   &= 0 - \frac{\partial{u}}{\partial{y}} \, dx \wedge dy + \frac{\partial{v}}{\partial{x}} \, dx \wedge dy + 0 \\
   &= \left(\frac{\partial{v}}{\partial{x}} - \frac{\partial{u}}{\partial{y}}\right) \, dx \wedge dy

\end{align}</math>

Stokes' theorem on manifolds

Шаблон:Main

If Шаблон:Math is a compact smooth orientable Шаблон:Math-dimensional manifold with boundary, and Шаблон:Math is an Шаблон:Math-form on Шаблон:Math, then the generalized form of Stokes' theorem states that

<math>\int_M d\omega = \int_{\partial{M}} \omega</math>

Intuitively, if one thinks of Шаблон:Math as being divided into infinitesimal regions, and one adds the flux through the boundaries of all the regions, the interior boundaries all cancel out, leaving the total flux through the boundary of Шаблон:Math.

Further properties

Closed and exact forms

Шаблон:Main article A Шаблон:Math-form Шаблон:Math is called closed if Шаблон:Math; closed forms are the kernel of Шаблон:Math. Шаблон:Math is called exact if Шаблон:Math for some Шаблон:Math-form Шаблон:Math; exact forms are the image of Шаблон:Math. Because Шаблон:Math, every exact form is closed. The Poincaré lemma states that in a contractible region, the converse is true.

de Rham cohomology

Because the exterior derivative Шаблон:Math has the property that Шаблон:Math, it can be used as the differential (coboundary) to define de Rham cohomology on a manifold. The Шаблон:Math-th de Rham cohomology (group) is the vector space of closed Шаблон:Math-forms modulo the exact Шаблон:Math-forms; as noted in the previous section, the Poincaré lemma states that these vector spaces are trivial for a contractible region, for Шаблон:Math. For smooth manifolds, integration of forms gives a natural homomorphism from the de Rham cohomology to the singular cohomology over Шаблон:Math. The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.

Naturality

The exterior derivative is natural in the technical sense: if Шаблон:Math is a smooth map and Шаблон:Math is the contravariant smooth functor that assigns to each manifold the space of Шаблон:Math-forms on the manifold, then the following diagram commutes

Файл:Exteriorderivnatural.png

so Шаблон:Math, where Шаблон:Math denotes the pullback of Шаблон:Math. This follows from that Шаблон:Math, by definition, is Шаблон:Math, Шаблон:Math being the pushforward of Шаблон:Math. Thus Шаблон:Math is a natural transformation from Шаблон:Math to Шаблон:Math.

Exterior derivative in vector calculus

Most vector calculus operators are special cases of, or have close relationships to, the notion of exterior differentiation.

Gradient

A smooth function Шаблон:Math on a real differentiable manifold Шаблон:Math is a Шаблон:Math-form. The exterior derivative of this Шаблон:Math-form is the Шаблон:Math-form Шаблон:Math.

When an inner product Шаблон:Math is defined, the gradient Шаблон:Math of a function Шаблон:Math is defined as the unique vector in Шаблон:Math such that its inner product with any element of Шаблон:Math is the directional derivative of Шаблон:Math along the vector, that is such that

<math>\langle \nabla f, \cdot \rangle = df = \sum_{i=1}^n \frac{\partial f}{\partial x^i}\, dx^i .</math>

That is,

<math>\nabla f = (df)^\sharp = \sum_{i=1}^n \frac{\partial f}{\partial x^i}\, \left(dx^i\right)^\sharp ,</math>

where Шаблон:Math denotes the musical isomorphism Шаблон:Math mentioned earlier that is induced by the inner product.

The Шаблон:Math-form Шаблон:Math is a section of the cotangent bundle, that gives a local linear approximation to Шаблон:Math in the cotangent space at each point.

Divergence

A vector field Шаблон:Math on Шаблон:Math has a corresponding Шаблон:Math-form

<math>\begin{align}
 \omega_V &= v_1 \left (dx^2 \wedge \cdots \wedge dx^n \right) - v_2 \left (dx^1 \wedge dx^3 \wedge \cdots \wedge dx^n \right ) + \cdots + (-1)^{n-1}v_n \left (dx^1 \wedge \cdots \wedge dx^{n-1} \right) \\
          &= \sum_{i=1}^n (-1)^{(i-1)}v_i \left (dx^1 \wedge \cdots \wedge dx^{i-1} \wedge \widehat{dx^{i}} \wedge dx^{i+1} \wedge \cdots \wedge dx^n \right )

\end{align}</math> where <math>\widehat{dx^{i}}</math> denotes the omission of that element.

(For instance, when Шаблон:Math, i.e. in three-dimensional space, the Шаблон:Math-form Шаблон:Math is locally the scalar triple product with Шаблон:Math.) The integral of Шаблон:Math over a hypersurface is the flux of Шаблон:Math over that hypersurface.

The exterior derivative of this Шаблон:Math-form is the Шаблон:Math-form

<math>d\omega _V = \operatorname{div} V \left (dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n \right ).</math>

Curl

A vector field Шаблон:Math on Шаблон:Math also has a corresponding Шаблон:Math-form

<math>\eta_V = v_1 \, dx^1 + v_2 \, dx^2 + \cdots + v_n \, dx^n.</math>

Locally, Шаблон:Math is the dot product with Шаблон:Math. The integral of Шаблон:Math along a path is the work done against Шаблон:Math along that path.

When Шаблон:Math, in three-dimensional space, the exterior derivative of the Шаблон:Math-form Шаблон:Math is the Шаблон:Math-form

<math>d\eta_V = \omega_{\operatorname{curl} V}.</math>

Invariant formulations of operators in vector calculus

The standard vector calculus operators can be generalized for any pseudo-Riemannian manifold, and written in coordinate-free notation as follows:

<math>\begin{array}{rcccl}
 \operatorname{grad} f &\equiv& \nabla f        &=& \left( d f \right)^\sharp \\
 \operatorname{div} F  &\equiv& \nabla \cdot F  &=& {\star d {\star} \mathord{\left( F^\flat \right)}} \\
 \operatorname{curl} F &\equiv& \nabla \times F &=& \left( {\star} d \mathord{\left( F^\flat \right)} \right)^\sharp \\
 \Delta f              &\equiv& \nabla^2 f      &=& {\star} d {\star} d f \\
                       &      & \nabla^2 F      &=& \left(d{\star}d{\star}\mathord{\left(F^{\flat}\right)} - {\star}d{\star}d\mathord{\left(F^{\flat}\right)}\right)^{\sharp} , \\

\end{array}</math> where Шаблон:Math is the Hodge star operator, Шаблон:Math and Шаблон:Math are the musical isomorphisms, Шаблон:Math is a scalar field and Шаблон:Math is a vector field.

Note that the expression for Шаблон:Math requires Шаблон:Math to act on Шаблон:Math, which is a form of degree Шаблон:Math. A natural generalization of Шаблон:Math to Шаблон:Math-forms of arbitrary degree allows this expression to make sense for any Шаблон:Math.

See also

Шаблон:Div col

Шаблон:Div col end

Notes

Шаблон:Reflist

References

External links

Шаблон:Manifolds Шаблон:Calculus topics Шаблон:Tensors

  1. Spivak(1970), p 7-18, Th. 13