Английская Википедия:Factorion

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In number theory, a factorion in a given number base <math>b</math> is a natural number that equals the sum of the factorials of its digits.[1][2][3] The name factorion was coined by the author Clifford A. Pickover.[4]

Definition

Let <math>n</math> be a natural number. For a base <math>b > 1</math>, we define the sum of the factorials of the digits[5][6] of <math>n</math>, <math>\operatorname{SFD}_b : \mathbb{N} \rightarrow \mathbb{N}</math>, to be the following:

<math>\operatorname{SFD}_b(n) = \sum_{i=0}^{k - 1} d_i!.</math>

where <math>k = \lfloor \log_b n \rfloor + 1</math> is the number of digits in the number in base <math>b</math>, <math>n!</math> is the factorial of <math>n</math> and

<math>d_i = \frac{n \bmod{b^{i+1}} - n \bmod{b^{i}}}{b^{i}}</math>

is the value of the <math>i</math>th digit of the number. A natural number <math>n</math> is a <math>b</math>-factorion if it is a fixed point for <math>\operatorname{SFD}_b</math>, i.e. if <math>\operatorname{SFD}_b(n) = n</math>.[7] <math>1</math> and <math>2</math> are fixed points for all bases <math>b</math>, and thus are trivial factorions for all <math>b</math>, and all other factorions are nontrivial factorions.

For example, the number 145 in base <math>b = 10</math> is a factorion because <math>145 = 1! + 4! + 5!</math>.

For <math>b = 2</math>, the sum of the factorials of the digits is simply the number of digits <math>k</math> in the base 2 representation since <math>0! = 1! = 1</math>.

A natural number <math>n</math> is a sociable factorion if it is a periodic point for <math>\operatorname{SFD}_b</math>, where <math>\operatorname{SFD}_b^k(n) = n</math> for a positive integer <math>k</math>, and forms a cycle of period <math>k</math>. A factorion is a sociable factorion with <math>k = 1</math>, and a amicable factorion is a sociable factorion with <math>k = 2</math>.[8][9]

All natural numbers <math>n</math> are preperiodic points for <math>\operatorname{SFD}_b</math>, regardless of the base. This is because all natural numbers of base <math>b</math> with <math>k</math> digits satisfy <math>b^{k-1} \leq n \leq (b-1)!(k)</math>. However, when <math>k \geq b</math>, then <math>b^{k-1} > (b-1)!(k)</math> for <math>b > 2</math>, so any <math>n</math> will satisfy <math>n > \operatorname{SFD}_b(n)</math> until <math>n < b^b</math>. There are finitely many natural numbers less than <math>b^b</math>, so the number is guaranteed to reach a periodic point or a fixed point less than <math> b^b</math>, making it a preperiodic point. For <math>b = 2</math>, the number of digits <math>k \leq n</math> for any number, once again, making it a preperiodic point. This means also that there are a finite number of factorions and cycles for any given base <math>b</math>.

The number of iterations <math>i</math> needed for <math>\operatorname{SFD}_b^i(n)</math> to reach a fixed point is the <math>\operatorname{SFD}_b</math> function's persistence of <math>n</math>, and undefined if it never reaches a fixed point.

Factorions for Шаблон:Math

b = (k − 1)!

Let <math>k</math> be a positive integer and the number base <math>b = (k - 1)!</math>. Then:

  • <math>n_1 = kb + 1</math> is a factorion for <math>\operatorname{SFD}_b</math> for all <math>k.</math>

Шаблон:Math proof

  • <math>n_2 = kb + 2</math> is a factorion for <math>\operatorname{SFD}_b</math> for all <math>k</math>.

Шаблон:Math proof

Factorions
<math>k</math> <math>b</math> <math>n_1</math> <math>n_2</math>
4 6 41 42
5 24 51 52
6 120 61 62
7 720 71 72

b = k! − k + 1

Let <math>k</math> be a positive integer and the number base <math>b = k! - k + 1</math>. Then:

  • <math>n_1 = b + k</math> is a factorion for <math>\operatorname{SFD}_b</math> for all <math>k</math>.

Шаблон:Math proof

Factorions
<math>k</math> <math>b</math> <math>n_1</math>
3 4 13
4 21 14
5 116 15
6 715 16

Table of factorions and cycles of Шаблон:Math

All numbers are represented in base <math>b</math>.

Base <math>b</math> Nontrivial factorion (<math>n \neq 1</math>, <math>n \neq 2</math>)[10] Cycles
2 <math>\varnothing</math> <math>\varnothing</math>
3 <math>\varnothing</math> <math>\varnothing</math>
4 13 3 → 12 → 3
5 144 <math>\varnothing</math>
6 41, 42 <math>\varnothing</math>
7 <math>\varnothing</math> 36 → 2055 → 465 → 2343 → 53 → 240 → 36
8 <math>\varnothing</math>

3 → 6 → 1320 → 12

175 → 12051 → 175

9 62558
10 145, 40585

871 → 45361 → 871[9]

872 → 45362 → 872[8]

See also

References

Шаблон:Reflist

External links

Шаблон:Classes of natural numbers