Английская Википедия:Feigenbaum constants

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Use dmy dates

Файл:Feigenbaum.png
Feigenbaum constant Шаблон:Mvar expresses the limit of the ratio of distances between consecutive bifurcation diagram on Шаблон:Math

In mathematics, specifically bifurcation theory, the Feigenbaum constants Шаблон:IPAc-en[1] are two mathematical constants which both express ratios in a bifurcation diagram for a non-linear map. They are named after the physicist Mitchell J. Feigenbaum.

History

Feigenbaum originally related the first constant to the period-doubling bifurcations in the logistic map, but also showed it to hold for all one-dimensional maps with a single quadratic maximum. As a consequence of this generality, every chaotic system that corresponds to this description will bifurcate at the same rate. Feigenbaum made this discovery in 1975,[2][3] and he officially published it in 1978.[4]

The first constant

The first Feigenbaum constant Шаблон:Mvar is the limiting ratio of each bifurcation interval to the next between every period doubling, of a one-parameter map

<math>x_{i+1} = f(x_i),</math>

where Шаблон:Math is a function parameterized by the bifurcation parameter Шаблон:Math.

It is given by the limit[5]

<math>\delta = \lim_{n \to \infty} \frac{a_{n-1} - a_{n-2}}{a_n - a_{n-1}} = 4.669\,201\,609\,\ldots,</math>

where Шаблон:Math are discrete values of Шаблон:Math at the Шаблон:Mathth period doubling.

Names

  • Feigenbaum constant
  • Feigenbaum bifurcation velocity
  • delta

Value

Illustration

Non-linear maps

To see how this number arises, consider the real one-parameter map

<math>f(x)=a-x^2.</math>

Here Шаблон:Math is the bifurcation parameter, Шаблон:Math is the variable. The values of Шаблон:Math for which the period doubles (e.g. the largest value for Шаблон:Math with no period-2 orbit, or the largest Шаблон:Math with no period-4 orbit), are Шаблон:Math, Шаблон:Math etc. These are tabulated below:[6]

Шаблон:Math Period Bifurcation parameter (Шаблон:Math) Ratio Шаблон:Math
1 2 0.75
2 4 1.25
3 8 Шаблон:Val 4.2337
4 16 Шаблон:Val 4.5515
5 32 Шаблон:Val 4.6458
6 64 Шаблон:Val 4.6639
7 128 Шаблон:Val 4.6682
8 256 Шаблон:Val 4.6689

The ratio in the last column converges to the first Feigenbaum constant. The same number arises for the logistic map

<math> f(x) = a x (1 - x) </math>

with real parameter Шаблон:Math and variable Шаблон:Math. Tabulating the bifurcation values again:[7]

Шаблон:Math Period Bifurcation parameter (Шаблон:Math) Ratio Шаблон:Math
1 2 3
2 4 Шаблон:Val
3 8 Шаблон:Val 4.7514
4 16 Шаблон:Val 4.6562
5 32 Шаблон:Val 4.6683
6 64 Шаблон:Val 4.6686
7 128 Шаблон:Val 4.6680
8 256 Шаблон:Val 4.6768

Fractals

Файл:Mandelbrot zoom.gif
Self-similarity in the Mandelbrot set shown by zooming in on a round feature while panning in the negative-Шаблон:Math direction. The display center pans from (−1, 0) to (−1.31, 0) while the view magnifies from 0.5 × 0.5 to 0.12 × 0.12 to approximate the Feigenbaum ratio.

In the case of the Mandelbrot set for complex quadratic polynomial

<math> f(z) = z^2 + c </math>

the Feigenbaum constant is the limiting ratio between the diameters of successive circles on the real axis in the complex plane (see animation on the right).

Шаблон:Math Period = Шаблон:Math Bifurcation parameter (Шаблон:Math) Ratio <math>= \dfrac{c_{n-1}-c_{n-2}}{c_n-c_{n-1}} </math>
1 2 Шаблон:Val
2 4 Шаблон:Val
3 8 Шаблон:Val 4.2337
4 16 Шаблон:Val 4.5515
5 32 Шаблон:Val 4.6459
6 64 Шаблон:Val 4.6639
7 128 Шаблон:Val 4.6668
8 256 Шаблон:Val 4.6740
9 512 Шаблон:Val 4.6596
10 1024 Шаблон:Val 4.6750
... ... ... ...
Шаблон:Math Шаблон:Val...

Bifurcation parameter is a root point of period-Шаблон:Math component. This series converges to the Feigenbaum point Шаблон:Math = −1.401155...... The ratio in the last column converges to the first Feigenbaum constant.

Файл:Feigenbaum Julia set.png
Julia set for the Feigenbaum point

Other maps also reproduce this ratio; in this sense the Feigenbaum constant in bifurcation theory is analogous to [[Pi (number)|Шаблон:Pi]] in geometry and Шаблон:Math in calculus.

The second constant

The second Feigenbaum constant or Feigenbaum's alpha constant Шаблон:OEIS,

<math>\alpha = 2.502\,907\,875\,095\,892\,822\,283\,902\,873\,218...,</math>

is the ratio between the width of a tine and the width of one of its two subtines (except the tine closest to the fold). A negative sign is applied to Шаблон:Math when the ratio between the lower subtine and the width of the tine is measured.[8]

These numbers apply to a large class of dynamical systems (for example, dripping faucets to population growth).[8]

A simple rational approximation is Шаблон:Sfrac × Шаблон:Sfrac × Шаблон:Sfrac = Шаблон:Sfrac.

Other values

The period-3 window in the logistic map also has a period-doubling route to chaos, and it has its own two Feigenbaum constants. <math>\delta = 55.26, \alpha = 9.277</math> (Appendix F.2[9]).

Properties

Both numbers are believed to be transcendental, although they have not been proven to be so.[10] In fact, there is no known proof that either constant is even irrational.

The first proof of the universality of the Feigenbaum constants was carried out by Oscar Lanford—with computer-assistance—in 1982[11] (with a small correction by Jean-Pierre Eckmann and Peter Wittwer of the University of Geneva in 1987[12]). Over the years, non-numerical methods were discovered for different parts of the proof, aiding Mikhail Lyubich in producing the first complete non-numerical proof.[13]

See also

Шаблон:Div col

Шаблон:Div col end

Notes

Шаблон:Reflist

References

External links

Шаблон:OEIS el
Шаблон:OEIS el

Шаблон:Chaos theory