Английская Википедия:Feigenbaum function
In the study of dynamical systems the term Feigenbaum function has been used to describe two different functions introduced by the physicist Mitchell Feigenbaum:[1]
- the solution to the Feigenbaum-Cvitanović functional equation; and
- the scaling function that described the covers of the attractor of the logistic map
Feigenbaum-Cvitanović functional equation
This functional equation arises in the study of one-dimensional maps that, as a function of a parameter, go through a period-doubling cascade. Discovered by Mitchell Feigenbaum and Predrag Cvitanović,[2] the equation is the mathematical expression of the universality of period doubling. It specifies a function g and a parameter Шаблон:Mvar by the relation
- <math> g(x) = - \alpha g( g(-x/\alpha ) ) </math>
with the initial conditions<math display="block">\begin{cases}
g(0) = 1, \\ g'(0) = 0, \\ g(0) < 0.
\end{cases}</math>For a particular form of solution with a quadratic dependence of the solution near Шаблон:Math is one of the Feigenbaum constants.
The power series of <math>g</math> is approximately[3]<math display="block">g(x) = 1 - 1.52763 x^2 + 0.104815 x^4 + 0.026705 x^6 + O(x^{8})</math>
Renormalization
The Feigenbaum function can be derived by a renormalization argument.[4]
The Feigenbaum function satisfies[5]<math display="block">g(x)=\lim _{n \rightarrow \infty} \frac{1}{F^{\left(2^n\right)}(0)} F^{\left(2^n\right)}\left(x F^{\left(2^n\right)}(0)\right)</math>for any map on the real line <math>F</math> at the onset of chaos.
Scaling function
The Feigenbaum scaling function provides a complete description of the attractor of the logistic map at the end of the period-doubling cascade. The attractor is a Cantor set, and just as the middle-third Cantor set, it can be covered by a finite set of segments, all bigger than a minimal size dn. For a fixed dn the set of segments forms a cover Δn of the attractor. The ratio of segments from two consecutive covers, Δn and Δn+1 can be arranged to approximate a function σ, the Feigenbaum scaling function.
See also
Notes
Bibliography
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal Bound as Order in Chaos, Proceedings of the International Conference on Order and Chaos held at the Center for Nonlinear Studies, Los Alamos, New Mexico 87545, USA 24–28 May 1982, Eds. David Campbell, Harvey Rose; North-Holland Amsterdam Шаблон:ISBN.
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite arXiv
- Шаблон:Cite journal
- Шаблон:MathWorld
- ↑ Feigenbaum, M. J. (1976) "Universality in complex discrete dynamics", Los Alamos Theoretical Division Annual Report 1975-1976
- ↑ Footnote on p. 46 of Feigenbaum (1978) states "This exact equation was discovered by P. Cvitanović during discussion and in collaboration with the author."
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite web