Английская Википедия:Fermat number

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox integer sequence

In mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form

<math>F_{n} = 2^{2^n} + 1,</math>

where n is a non-negative integer. The first few Fermat numbers are:

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... Шаблон:OEIS.

If 2k + 1 is prime and Шаблон:Nowrap, then k itself must be a power of 2, so Шаблон:Nowrap is a Fermat number; such primes are called Fermat primes. Шаблон:As of, the only known Fermat primes are Шаблон:Nowrap, Шаблон:Nowrap, Шаблон:Nowrap, Шаблон:Nowrap, and Шаблон:Nowrap Шаблон:OEIS.

Basic properties

The Fermat numbers satisfy the following recurrence relations:

<math>

F_{n} = (F_{n-1}-1)^{2}+1</math>

<math>

F_{n} = F_{0} \cdots F_{n-1} + 2</math>

for n ≥ 1,

<math>

F_{n} = F_{n-1} + 2^{2^{n-1}}F_{0} \cdots F_{n-2}</math>

<math>

F_{n} = F_{n-1}^2 - 2(F_{n-2}-1)^2</math>

for Шаблон:Nowrap. Each of these relations can be proved by mathematical induction. From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1. To see this, suppose that Шаблон:Nowrap and Fi and Fj have a common factor Шаблон:Nowrap. Then a divides both

<math>F_{0} \cdots F_{j-1}</math>

and Fj; hence a divides their difference, 2. Since Шаблон:Nowrap, this forces Шаблон:Nowrap. This is a contradiction, because each Fermat number is clearly odd. As a corollary, we obtain another proof of the infinitude of the prime numbers: for each Fn, choose a prime factor pn; then the sequence Шаблон:Mset is an infinite sequence of distinct primes.

Further properties

Primality

Fermat numbers and Fermat primes were first studied by Pierre de Fermat, who conjectured that all Fermat numbers are prime. Indeed, the first five Fermat numbers F0, ..., F4 are easily shown to be prime. Fermat's conjecture was refuted by Leonhard Euler in 1732 when he showed that

<math> F_{5} = 2^{2^5} + 1 = 2^{32} + 1 = 4294967297 = 641 \times 6700417. </math>

Euler proved that every factor of Fn must have the form Шаблон:Nowrap (later improved to Шаблон:Nowrap by Lucas) for Шаблон:Nowrap.

That 641 is a factor of F5 can be deduced from the equalities 641 = 27 × 5 + 1 and 641 = 24 + 54. It follows from the first equality that 27 × 5 ≡ −1 (mod 641) and therefore (raising to the fourth power) that 228 × 54 ≡ 1 (mod 641). On the other hand, the second equality implies that 54 ≡ −24 (mod 641). These congruences imply that 232 ≡ −1 (mod 641).

Fermat was probably aware of the form of the factors later proved by Euler, so it seems curious that he failed to follow through on the straightforward calculation to find the factor.[1] One common explanation is that Fermat made a computational mistake.

There are no other known Fermat primes Fn with Шаблон:Nowrap, but little is known about Fermat numbers for large n.[2] In fact, each of the following is an open problem:

Шаблон:As of, it is known that Fn is composite for Шаблон:Nowrap, although of these, complete factorizations of Fn are known only for Шаблон:Nowrap, and there are no known prime factors for Шаблон:Nowrap and Шаблон:Nowrap.[4] The largest Fermat number known to be composite is F18233954, and its prime factor Шаблон:Nowrap was discovered in October 2020.

Heuristic arguments

Heuristics suggest that F4 is the last Fermat prime.

The prime number theorem implies that a random integer in a suitable interval around N is prime with probability 1Шаблон:Space/Шаблон:Spaceln N. If one uses the heuristic that a Fermat number is prime with the same probability as a random integer of its size, and that F5, ..., F32 are composite, then the expected number of Fermat primes beyond F4 (or equivalently, beyond F32) should be

<math> \sum_{n \ge 33} \frac{1}{\ln F_{n}} < \frac{1}{\ln 2} \sum_{n \ge 33} \frac{1}{\log_2(2^{2^n})} = \frac{1}{\ln 2} 2^{-32} < 3.36 \times 10^{-10}.</math>

One may interpret this number as an upper bound for the probability that a Fermat prime beyond F4 exists.

This argument is not a rigorous proof. For one thing, it assumes that Fermat numbers behave "randomly", but the factors of Fermat numbers have special properties. Boklan and Conway published a more precise analysis suggesting that the probability that there is another Fermat prime is less than one in a billion.[5]

Anders Bjorn and Hans Riesel estimated the number of square factors of Fermat numbers from F5 onward as

<math>

\sum_{n \ge 5} \sum_{k \ge 1} \frac{1}{k (k 2^n + 1) \ln(k 2^n)} < \frac{\pi^2}{6 \ln 2} \sum_{n \ge 5} \frac{1}{n 2^n} \approx 0.02576; </math> in other words, there are unlikely to be any non-squarefree Fermat numbers, and in general square factors of <math>a^{2^n} + b^{2^n}</math> are very rare for large n.[6]

Equivalent conditions

Шаблон:Main article

Let <math>F_n=2^{2^n}+1</math> be the nth Fermat number. Pépin's test states that for Шаблон:Nowrap,

<math>F_n</math> is prime if and only if <math>3^{(F_n-1)/2}\equiv-1\pmod{F_n}.</math>

The expression <math>3^{(F_n-1)/2}</math> can be evaluated modulo <math>F_n</math> by repeated squaring. This makes the test a fast polynomial-time algorithm. But Fermat numbers grow so rapidly that only a handful of them can be tested in a reasonable amount of time and space.

There are some tests for numbers of the form Шаблон:Nowrap, such as factors of Fermat numbers, for primality.

Proth's theorem (1878). Let Шаблон:Nowrap with odd Шаблон:Nowrap. If there is an integer a such that
<math>a^{(N-1)/2} \equiv -1\pmod{N}</math>
then <math>N</math> is prime. Conversely, if the above congruence does not hold, and in addition
<math>\left(\frac{a}{N}\right)=-1</math> (See Jacobi symbol)
then <math>N</math> is composite.

If Шаблон:Nowrap, then the above Jacobi symbol is always equal to −1 for Шаблон:Nowrap, and this special case of Proth's theorem is known as Pépin's test. Although Pépin's test and Proth's theorem have been implemented on computers to prove the compositeness of some Fermat numbers, neither test gives a specific nontrivial factor. In fact, no specific prime factors are known for Шаблон:Nowrap and 24.

Factorization

Because of Fermat numbers' size, it is difficult to factorize or even to check primality. Pépin's test gives a necessary and sufficient condition for primality of Fermat numbers, and can be implemented by modern computers. The elliptic curve method is a fast method for finding small prime divisors of numbers. Distributed computing project Fermatsearch has found some factors of Fermat numbers. Yves Gallot's proth.exe has been used to find factors of large Fermat numbers. Édouard Lucas, improving Euler's above-mentioned result, proved in 1878 that every factor of the Fermat number <math>F_n</math>, with n at least 2, is of the form <math>k\times2^{n+2}+1</math> (see Proth number), where k is a positive integer. By itself, this makes it easy to prove the primality of the known Fermat primes.

Factorizations of the first twelve Fermat numbers are:

F0 = 21 + 1 = 3 is prime
F1 = 22 + 1 = 5 is prime
F2 = 24 + 1 = 17 is prime
F3 = 28 + 1 = 257 is prime
F4 = 216 + 1 = 65,537 is the largest known Fermat prime
F5 = 232 + 1 = 4,294,967,297
= 641 × 6,700,417 (fully factored 1732[7])
F6 = 264 + 1 = 18,446,744,073,709,551,617 (20 digits)
= 274,177 × 67,280,421,310,721 (14 digits) (fully factored 1855)
F7 = 2128 + 1 = 340,282,366,920,938,463,463,374,607,431,768,211,457 (39 digits)
= 59,649,589,127,497,217 (17 digits) × 5,704,689,200,685,129,054,721 (22 digits) (fully factored 1970)
F8 = 2256 + 1 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,
639,937 (78 digits)
= 1,238,926,361,552,897 (16 digits) ×
93,461,639,715,357,977,769,163,558,199,606,896,584,051,237,541,638,188,580,280,321 (62 digits) (fully factored 1980)
F9 = 2512 + 1 = 13,407,807,929,942,597,099,574,024,998,205,846,127,479,365,820,592,393,377,723,561,443,721,764,0
30,073,546,976,801,874,298,166,903,427,690,031,858,186,486,050,853,753,882,811,946,569,946,433,6
49,006,084,097 (155 digits)
= 2,424,833 × 7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 (49 digits) ×
741,640,062,627,530,801,524,787,141,901,937,474,059,940,781,097,519,023,905,821,316,144,415,759,
504,705,008,092,818,711,693,940,737 (99 digits) (fully factored 1990)
F10 = 21024 + 1 = 179,769,313,486,231,590,772,930...304,835,356,329,624,224,137,217 (309 digits)
= 45,592,577 × 6,487,031,809 × 4,659,775,785,220,018,543,264,560,743,076,778,192,897 (40 digits) ×
130,439,874,405,488,189,727,484...806,217,820,753,127,014,424,577 (252 digits) (fully factored 1995)
F11 = 22048 + 1 = 32,317,006,071,311,007,300,714,8...193,555,853,611,059,596,230,657 (617 digits)
= 319,489 × 974,849 × 167,988,556,341,760,475,137 (21 digits) × 3,560,841,906,445,833,920,513 (22 digits) ×
173,462,447,179,147,555,430,258...491,382,441,723,306,598,834,177 (564 digits) (fully factored 1988)

Шаблон:As of, only F0 to F11 have been completely factored.[4] The distributed computing project Fermat Search is searching for new factors of Fermat numbers.[8] The set of all Fermat factors is A050922 (or, sorted, A023394) in OEIS.

The following factors of Fermat numbers were known before 1950 (since then, digital computers have helped find more factors):

Year Finder Fermat number Factor
1732 Euler <math>F_5</math> <math>5 \cdot 2^7 + 1</math>
1732 Euler <math>F_5</math> (fully factored) <math>52347 \cdot 2^7 + 1</math>
1855 Clausen <math>F_6</math> <math>1071 \cdot 2^8 + 1</math>
1855 Clausen <math>F_6</math> (fully factored) <math>262814145745 \cdot 2^8 + 1</math>
1877 Pervushin <math>F_{12}</math> <math>7 \cdot 2^{14} + 1</math>
1878 Pervushin <math>F_{23}</math> <math>5 \cdot 2^{25} + 1</math>
1886 Seelhoff <math>F_{36}</math> <math>5 \cdot 2^{39} + 1</math>
1899 Cunningham <math>F_{11}</math> <math>39 \cdot 2^{13} + 1</math>
1899 Cunningham <math>F_{11}</math> <math>119 \cdot 2^{13} + 1</math>
1903 Western <math>F_9</math> <math>37 \cdot 2^{16} + 1</math>
1903 Western <math>F_{12}</math> <math>397 \cdot 2^{16} + 1</math>
1903 Western <math>F_{12}</math> <math>973 \cdot 2^{16} + 1</math>
1903 Western <math>F_{18}</math> <math>13 \cdot 2^{20} + 1</math>
1903 Cullen <math>F_{38}</math> <math>3 \cdot 2^{41} + 1</math>
1906 Morehead <math>F_{73}</math> <math>5 \cdot 2^{75} + 1</math>
1925 Kraitchik <math>F_{15}</math> <math>579 \cdot 2^{21} + 1</math>

Шаблон:As of, 368 prime factors of Fermat numbers are known, and 324 Fermat numbers are known to be composite.[4] Several new Fermat factors are found each year.[9]

Pseudoprimes and Fermat numbers

Like composite numbers of the form 2p − 1, every composite Fermat number is a strong pseudoprime to base 2. This is because all strong pseudoprimes to base 2 are also Fermat pseudoprimes – i.e.,

<math>2^{F_n-1} \equiv 1 \pmod{F_n}</math>

for all Fermat numbers.

In 1904, Cipolla showed that the product of at least two distinct prime or composite Fermat numbers <math>F_{a} F_{b} \dots F_{s},</math> <math>a > b > \dots > s > 1</math> will be a Fermat pseudoprime to base 2 if and only if <math>2^s > a </math>.[10]

Other theorems about Fermat numbers

Шаблон:Math theorem Шаблон:Math theorem Шаблон:Math theorem Шаблон:Math theorem \right)^{2} \equiv 2^{1+2^{n-1}} \pmod p.</math>

Since an odd power of 2 is a quadratic residue modulo p, so is 2 itself. }}}}

A Fermat number cannot be a perfect number or part of a pair of amicable numbers. Шаблон:Harv

The series of reciprocals of all prime divisors of Fermat numbers is convergent. Шаблон:Harv

If Шаблон:Nowrap is prime, there exists an integer m such that Шаблон:Nowrap. The equation Шаблон:Nowrap holds in that case.[11][12]

Let the largest prime factor of the Fermat number Fn be P(Fn). Then,

<math>P(F_n) \ge 2^{n+2}(4n+9) + 1.</math> Шаблон:Harv

Relationship to constructible polygons

Файл:Constructible polygon set.svg
Number of sides of known constructible polygons having up to 1000 sides (bold) or odd side count (red)

Шаблон:Main article

Carl Friedrich Gauss developed the theory of Gaussian periods in his Disquisitiones Arithmeticae and formulated a sufficient condition for the constructibility of regular polygons. Gauss stated that this condition was also necessary,[13] but never published a proof. Pierre Wantzel gave a full proof of necessity in 1837. The result is known as the Gauss–Wantzel theorem:

An n-sided regular polygon can be constructed with compass and straightedge if and only if n is either a power of 2 or the product of a power of 2 and distinct Fermat primes: in other words, if and only if n is of the form Шаблон:Nowrap or Шаблон:Nowrap, where k, s are nonnegative integers and the pi are distinct Fermat primes.

A positive integer n is of the above form if and only if its totient φ(n) is a power of 2.

Applications of Fermat numbers

Pseudorandom number generation

Fermat primes are particularly useful in generating pseudo-random sequences of numbers in the range 1, ..., N, where N is a power of 2. The most common method used is to take any seed value between 1 and Шаблон:Nowrap, where P is a Fermat prime. Now multiply this by a number A, which is greater than the square root of P and is a primitive root modulo P (i.e., it is not a quadratic residue). Then take the result modulo P. The result is the new value for the RNG.

<math>V_{j+1} = (A \times V_j) \bmod P</math> (see linear congruential generator, RANDU)

This is useful in computer science, since most data structures have members with 2X possible values. For example, a byte has 256 (28) possible values (0–255). Therefore, to fill a byte or bytes with random values, a random number generator that produces values 1–256 can be used, the byte taking the output value −1. Very large Fermat primes are of particular interest in data encryption for this reason. This method produces only pseudorandom values, as after Шаблон:Nowrap repetitions, the sequence repeats. A poorly chosen multiplier can result in the sequence repeating sooner than Шаблон:Nowrap.

Generalized Fermat numbers

Numbers of the form <math>a^{2^{ \overset{n} {}}} \!\!+ b^{2^{ \overset{n} {}}}</math> with a, b any coprime integers, Шаблон:Nowrap, are called generalized Fermat numbers. An odd prime p is a generalized Fermat number if and only if p is congruent to 1 (mod 4). (Here we consider only the case Шаблон:Nowrap, so Шаблон:Nowrap \!+ 1</math>}} is not a counterexample.)

An example of a probable prime of this form is 1215131072 + 242131072 (found by Kellen Shenton).[14]

By analogy with the ordinary Fermat numbers, it is common to write generalized Fermat numbers of the form <math>a^{2^{ \overset{n} {}}} \!\!+ 1</math> as Fn(a). In this notation, for instance, the number 100,000,001 would be written as F3(10). In the following we shall restrict ourselves to primes of this form, <math>a^{2^{ \overset{n} {}}} \!\!+ 1</math>, such primes are called "Fermat primes base a". Of course, these primes exist only if a is even.

If we require Шаблон:Nowrap, then Landau's fourth problem asks if there are infinitely many generalized Fermat primes Fn(a).

Generalized Fermat primes of the form Fn(a)

Because of the ease of proving their primality, generalized Fermat primes have become in recent years a topic for research within the field of number theory. Many of the largest known primes today are generalized Fermat primes.

Generalized Fermat numbers can be prime only for even Шаблон:Mvar, because if Шаблон:Mvar is odd then every generalized Fermat number will be divisible by 2. The smallest prime number <math>F_n(a)</math> with <math>n>4</math> is <math>F_5(30)</math>, or 3032 + 1. Besides, we can define "half generalized Fermat numbers" for an odd base, a half generalized Fermat number to base a (for odd a) is <math>\frac{a^{2^n} \!+ 1}{2}</math>, and it is also to be expected that there will be only finitely many half generalized Fermat primes for each odd base.

In this list, the generalized Fermat numbers (<math>F_n(a)</math>) to an even Шаблон:Mvar are <math>a^{2^n} \!+ 1</math>, for odd Шаблон:Mvar, they are <math>\frac{a^{2^n} \!\!+ 1}{2}</math>. If Шаблон:Mvar is a perfect power with an odd exponent Шаблон:OEIS, then all generalized Fermat number can be algebraic factored, so they cannot be prime.

See[15][16] for even bases up to 1000, and[17] for odd bases. For the smallest number <math>n</math> such that <math>F_n(a)</math> is prime, see Шаблон:Oeis.

<math>a</math> numbers <math>n</math>
such that
<math>F_n(a)</math> is prime
<math>a</math> numbers <math>n</math>
such that
<math>F_n(a)</math> is prime
<math>a</math> numbers <math>n</math>
such that
<math>F_n(a)</math> is prime
<math>a</math> numbers <math>n</math>
such that
<math>F_n(a)</math> is prime
2 0, 1, 2, 3, 4, ... 18 0, ... 34 2, ... 50 ...
3 0, 1, 2, 4, 5, 6, ... 19 1, ... 35 1, 2, 6, ... 51 1, 3, 6, ...
4 0, 1, 2, 3, ... 20 1, 2, ... 36 0, 1, ... 52 0, ...
5 0, 1, 2, ... 21 0, 2, 5, ... 37 0, ... 53 3, ...
6 0, 1, 2, ... 22 0, ... 38 ... 54 1, 2, 5, ...
7 2, ... 23 2, ... 39 1, 2, ... 55 ...
8 Шаблон:CNone 24 1, 2, ... 40 0, 1, ... 56 1, 2, ...
9 0, 1, 3, 4, 5, ... 25 0, 1, ... 41 4, ... 57 0, 2, ...
10 0, 1, ... 26 1, ... 42 0, ... 58 0, ...
11 1, 2, ... 27 Шаблон:CNone 43 3, ... 59 1, ...
12 0, ... 28 0, 2, ... 44 4, ... 60 0, ...
13 0, 2, 3, ... 29 1, 2, 4, ... 45 0, 1, ... 61 0, 1, 2, ...
14 1, ... 30 0, 5, ... 46 0, 2, 9, ... 62 ...
15 1, ... 31 ... 47 3, ... 63 ...
16 0, 1, 2, ... 32 Шаблон:CNone 48 2, ... 64 Шаблон:CNone
17 2, ... 33 0, 3, ... 49 1, ... 65 1, 2, 5, ...

For the smallest even base Шаблон:Mvar such that <math>F_n(a)</math> is prime, see Шаблон:Oeis.

<math>n</math> bases Шаблон:Mvar such that <math>F_n(a)</math> is prime (only consider even Шаблон:Mvar) OEIS sequence
0 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, ... Шаблон:OEIS link
1 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 184, ... Шаблон:OEIS link
2 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, ... Шаблон:OEIS link
3 2, 4, 118, 132, 140, 152, 208, 240, 242, 288, 290, 306, 378, 392, 426, 434, 442, 508, 510, 540, 542, 562, 596, 610, 664, 680, 682, 732, 782, ... Шаблон:OEIS link
4 2, 44, 74, 76, 94, 156, 158, 176, 188, 198, 248, 288, 306, 318, 330, 348, 370, 382, 396, 452, 456, 470, 474, 476, 478, 560, 568, 598, 642, ... Шаблон:OEIS link
5 30, 54, 96, 112, 114, 132, 156, 332, 342, 360, 376, 428, 430, 432, 448, 562, 588, 726, 738, 804, 850, 884, 1068, 1142, 1198, 1306, 1540, 1568, ... Шаблон:OEIS link
6 102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238, 2336, 2388, ... Шаблон:OEIS link
7 120, 190, 234, 506, 532, 548, 960, 1738, 1786, 2884, 3000, 3420, 3476, 3658, 4258, 5788, 6080, 6562, 6750, 7692, 8296, 9108, 9356, 9582, ... Шаблон:OEIS link
8 278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930, 7022, 7332, ... Шаблон:OEIS link
9 46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682, 7388, 7992, ... Шаблон:OEIS link
10 824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358, 17646, 17670, ... Шаблон:OEIS link
11 150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738, 44174, 45654, ... Шаблон:OEIS link
12 1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540, 101578, 109696, ... Шаблон:OEIS link
13 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, ... Шаблон:OEIS link
14 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, ... Шаблон:OEIS link
15 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, ... Шаблон:OEIS link
16 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, ... Шаблон:OEIS link
17 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, ... Шаблон:OEIS link
18 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, ... Шаблон:OEIS link
19 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, ... Шаблон:OEIS link
20 919444, 1059094, 1951734, 1963736, ... Шаблон:OEIS link

The smallest bases b=b(n) such that b2n + 1 (for given n= 0,1,2, ...) is prime are

2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444, ... Шаблон:OEIS

Conversely, the smallest k=k(n) such that (2n)k + 1 (for given n) is prime are

1, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 4, 1, ... (The next term is unknown) Шаблон:OEIS (also see Шаблон:Oeis and Шаблон:Oeis)

A more elaborate theory can be used to predict the number of bases for which <math>F_n(a)</math> will be prime for fixed <math>n</math>. The number of generalized Fermat primes can be roughly expected to halve as <math>n</math> is increased by 1.

Generalized Fermat primes of the form Fn(a, b)

It is also possible to construct generalized Fermat primes of the form <math>a^{2^n} + b^{2^n}</math>. As in the case where b=1, numbers of this form will always be divisible by 2 if a+b is even, but it is still possible to define generalized half-Fermat primes of this type. For the smallest prime of the form <math>F_n(a,b)</math> (for odd <math>a+b</math>), see also Шаблон:Oeis.

<math>a</math> <math>b</math> numbers <math>n</math> such that
<math>F_n(a,b) = \frac{a^{2^n}+b^{2^n}}{\gcd(a+b, 2)}</math>
is prime[18][6]
2 1 0, 1, 2, 3, 4, ...
3 1 0, 1, 2, 4, 5, 6, ...
3 2 0, 1, 2, ...
4 1 0, 1, 2, 3, ... (equivalent to <math>F_n(2, 1)</math>)
4 3 0, 2, 4, ...
5 1 0, 1, 2, ...
5 2 0, 1, 2, ...
5 3 1, 2, 3, ...
5 4 1, 2, ...
6 1 0, 1, 2, ...
6 5 0, 1, 3, 4, ...
7 1 2, ...
7 2 1, 2, ...
7 3 0, 1, 8, ...
7 4 0, 2, ...
7 5 1, 4,
7 6 0, 2, 4, ...
8 1 Шаблон:CNone
8 3 0, 1, 2, ...
8 5 0, 1, 2,
8 7 1, 4, ...
9 1 0, 1, 3, 4, 5, ... (equivalent to <math>F_n(3, 1)</math>)
9 2 0, 2, ...
9 4 0, 1, ... (equivalent to <math>F_n(3, 2)</math>)
9 5 0, 1, 2, ...
9 7 2, ...
9 8 0, 2, 5, ...
10 1 0, 1, ...
10 3 0, 1, 3, ...
10 7 0, 1, 2, ...
10 9 0, 1, 2, ...
11 1 1, 2, ...
11 2 0, 2, ...
11 3 0, 3, ...
11 4 1, 2, ...
11 5 1, ...
11 6 0, 1, 2, ...
11 7 2, 4, 5, ...
11 8 0, 6, ...
11 9 1, 2, ...
11 10 5, ...
12 1 0, ...
12 5 0, 4, ...
12 7 0, 1, 3, ...
12 11 0, ...

Largest known generalized Fermat primes

The following is a list of the five largest known generalized Fermat primes.[19] The whole top-5 is discovered by participants in the PrimeGrid project.

Rank Prime number Generalized Fermat notation Number of digits Discovery date ref.
1 19637361048576 + 1 F20(1963736) 6,598,776 Sep 2022 [20]
2 19517341048576 + 1 F20(1951734) 6,595,985 Aug 2022 [21]
3 10590941048576 + 1 F20(1059094) 6,317,602 Nov 2018 [22]
4 9194441048576 + 1 F20(919444) 6,253,210 Sep 2017 [23]
5 81 × 220498148 + 1 F2(3 × 25124537) 6,170,560 Jun 2023 [24]

On the Prime Pages one can find the current top 100 generalized Fermat primes.

See also

Notes

Шаблон:Reflist

References

External links

Шаблон:Prime number classes Шаблон:Classes of natural numbers Шаблон:Authority control Шаблон:Pierre de Fermat