Английская Википедия:Fibonacci sequence

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:For

Файл:Fibonacci Squares.svg
A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Шаблон:Nowrap. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the sequence begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ....[1]

The Fibonacci numbers were first described in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.[2][3][4] They are named after the Italian mathematician Leonardo of Pisa, also known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book Шаблон:Lang.Шаблон:Sfn

Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the Fibonacci Quarterly. Applications of Fibonacci numbers include computer algorithms such as the Fibonacci search technique and the Fibonacci heap data structure, and graphs called Fibonacci cubes used for interconnecting parallel and distributed systems. They also appear in biological settings, such as branching in trees, the arrangement of leaves on a stem, the fruit sprouts of a pineapple, the flowering of an artichoke, and the arrangement of a pine cone's bracts, though they do not occur in all species.

Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the Шаблон:Mvar-th Fibonacci number in terms of Шаблон:Mvar and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as Шаблон:Mvar increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same recurrence relation and with the Fibonacci numbers form a complementary pair of Lucas sequences.

Definition

Файл:Fibonacci Spiral.svg
The Fibonacci spiral: an approximation of the golden spiral created by drawing circular arcs connecting the opposite corners of squares in the Fibonacci tiling (see preceding image)

The Fibonacci numbers may be defined by the recurrence relationШаблон:Sfn <math display=block>F_0=0,\quad F_1= 1,</math> and <math display=block>F_n=F_{n-1} + F_{n-2}</math> for Шаблон:Math.

Under some older definitions, the value <math>F_0 = 0</math> is omitted, so that the sequence starts with <math>F_1=F_2=1,</math> and the recurrence <math>F_n=F_{n-1} + F_{n-2}</math> is valid for Шаблон:Math.Шаблон:SfnШаблон:Sfn

The first 20 Fibonacci numbers Шаблон:Math are:[1]

Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

History

India

Шаблон:See also

Файл:Fibonacci Sanskrit prosody.svg
Thirteen (Шаблон:Math) ways of arranging long and short syllables in a cadence of length six. Eight (Шаблон:Math) end with a short syllable and five (Шаблон:Math) end with a long syllable.

The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody.[3][5]Шаблон:Sfn In the Sanskrit poetic tradition, there was interest in enumerating all patterns of long (L) syllables of 2 units duration, juxtaposed with short (S) syllables of 1 unit duration. Counting the different patterns of successive L and S with a given total duration results in the Fibonacci numbers: the number of patterns of duration Шаблон:Mvar units is Шаблон:Math.[4]

Knowledge of the Fibonacci sequence was expressed as early as Pingala (Шаблон:Circa 450 BC–200 BC). Singh cites Pingala's cryptic formula misrau cha ("the two are mixed") and scholars who interpret it in context as saying that the number of patterns for Шаблон:Mvar beats (Шаблон:Math) is obtained by adding one [S] to the Шаблон:Math cases and one [L] to the Шаблон:Math cases.[6] Bharata Muni also expresses knowledge of the sequence in the Natya Shastra (c. 100 BC–c. 350 AD).[7][2] However, the clearest exposition of the sequence arises in the work of Virahanka (c. 700 AD), whose own work is lost, but is available in a quotation by Gopala (c. 1135):Шаблон:Sfn

Variations of two earlier meters [is the variation] ... For example, for [a meter of length] four, variations of meters of two [and] three being mixed, five happens. [works out examples 8, 13, 21] ... In this way, the process should be followed in all mātrā-vṛttas [prosodic combinations].Шаблон:Efn

Hemachandra (c. 1150) is credited with knowledge of the sequence as well,[2] writing that "the sum of the last and the one before the last is the number ... of the next mātrā-vṛtta."Шаблон:Sfn[8]

Europe

Файл:Liber abbaci magliab f124r.jpg
A page of Fibonacci's Шаблон:Lang from the Biblioteca Nazionale di Firenze showing (in box on right) 13 entries of the Fibonacci sequence:
the indices from present to XII (months) as Latin ordinals and Roman numerals and the numbers (of rabbit pairs) as Hindu-Arabic numerals starting with 1, 2, 3, 5 and ending with 377.

The Fibonacci sequence first appears in the book Шаблон:Lang (The Book of Calculation, 1202) by FibonacciШаблон:Sfn[9] where it is used to calculate the growth of rabbit populations.[10][11] Fibonacci considers the growth of an idealized (biologically unrealistic) rabbit population, assuming that: a newly born breeding pair of rabbits are put in a field; each breeding pair mates at the age of one month, and at the end of their second month they always produce another pair of rabbits; and rabbits never die, but continue breeding forever. Fibonacci posed the puzzle: how many pairs will there be in one year?

  • At the end of the first month, they mate, but there is still only 1 pair.
  • At the end of the second month they produce a new pair, so there are 2 pairs in the field.
  • At the end of the third month, the original pair produce a second pair, but the second pair only mate to gestate for a month, so there are 3 pairs in all.
  • At the end of the fourth month, the original pair has produced yet another new pair, and the pair born two months ago also produces their first pair, making 5 pairs.

At the end of the Шаблон:Mvar-th month, the number of pairs of rabbits is equal to the number of mature pairs (that is, the number of pairs in month Шаблон:Math) plus the number of pairs alive last month (month Шаблон:Math). The number in the Шаблон:Mvar-th month is the Шаблон:Mvar-th Fibonacci number.[12]

The name "Fibonacci sequence" was first used by the 19th-century number theorist Édouard Lucas.[13]

Файл:Fibonacci Rabbits.svg
In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence. At the end of the nth month, the number of pairs is equal to Fn.

Relation to the golden ratio

Шаблон:Main

Closed-form expression

Like every sequence defined by a linear recurrence with constant coefficients, the Fibonacci numbers have a closed-form expression. It has become known as Binet's formula, named after French mathematician Jacques Philippe Marie Binet, though it was already known by Abraham de Moivre and Daniel Bernoulli:[14]

<math display=block> F_n = \frac{\varphi^n-\psi^n}{\varphi-\psi} = \frac{\varphi^n-\psi^n}{\sqrt 5}, </math>

where

<math display=block> \varphi = \frac{1 + \sqrt{5}}{2} \approx 1.61803\,39887\ldots </math>

is the golden ratio, and Шаблон:Mvar is its conjugate:Шаблон:Sfn

<math display=block> \psi = \frac{1 - \sqrt{5}}{2} = 1 - \varphi = - {1 \over \varphi} \approx -0.61803\,39887\ldots. </math>

Since <math>\psi = -\varphi^{-1}</math>, this formula can also be written as

<math display=block> F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt 5} = \frac{\varphi^n - (-\varphi)^{-n}}{2\varphi - 1}. </math>

To see the relation between the sequence and these constants,Шаблон:Sfn note that Шаблон:Mvar and Шаблон:Mvar are both solutions of the equation <math display=inline>x^2 = x + 1</math> and thus <math>x^n = x^{n-1} + x^{n-2},</math> so the powers of Шаблон:Mvar and Шаблон:Mvar satisfy the Fibonacci recursion. In other words,

<math display=block>\begin{align} \varphi^n &= \varphi^{n-1} + \varphi^{n-2}, \\[3mu] \psi^n &= \psi^{n-1} + \psi^{n-2}. \end{align}</math>

It follows that for any values Шаблон:Mvar and Шаблон:Mvar, the sequence defined by

<math display=block>U_n=a \varphi^n + b \psi^n</math>

satisfies the same recurrence,

<math display=block>\begin{align} U_n &= a\varphi^n + b\psi^n \\[3mu] &= a(\varphi^{n-1} + \varphi^{n-2}) + b(\psi^{n-1} + \psi^{n-2}) \\[3mu] &= a\varphi^{n-1} + b\psi^{n-1} + a\varphi^{n-2} + b\psi^{n-2} \\[3mu] &= U_{n-1} + U_{n-2}. \end{align}</math>

If Шаблон:Mvar and Шаблон:Mvar are chosen so that Шаблон:Math and Шаблон:Math then the resulting sequence Шаблон:Math must be the Fibonacci sequence. This is the same as requiring Шаблон:Mvar and Шаблон:Mvar satisfy the system of equations:

<math display=block> \left\{\begin{align} a + b &= 0 \\ \varphi a + \psi b &= 1\end{align}\right. </math>

which has solution

<math display=block> a = \frac{1}{\varphi-\psi} = \frac{1}{\sqrt 5},\quad b = -a, </math>

producing the required formula.

Taking the starting values Шаблон:Math and Шаблон:Math to be arbitrary constants, a more general solution is:

<math display=block> U_n = a\varphi^n + b\psi^n </math>

where

<math display=block>\begin{align} a&=\frac{U_1-U_0\psi}{\sqrt 5}, \\[3mu] b&=\frac{U_0\varphi-U_1}{\sqrt 5}. \end{align}</math>

Computation by rounding

Since <math display=inline>\left|\frac{\psi^{n}}{\sqrt 5}\right| < \frac{1}{2}</math> for all Шаблон:Math, the number Шаблон:Math is the closest integer to <math>\frac{\varphi^n}{\sqrt 5}</math>. Therefore, it can be found by rounding, using the nearest integer function: <math display=block>F_n=\left\lfloor\frac{\varphi^n}{\sqrt 5}\right\rceil,\ n \geq 0.</math>

In fact, the rounding error is very small, being less than 0.1 for Шаблон:Math, and less than 0.01 for Шаблон:Math. This formula is easily inverted to find an index of a Fibonacci number Шаблон:Mvar: <math display=block>n(F) = \left\lfloor \log_\varphi \sqrt{5}F\right\rceil,\ F \geq 1.</math>

Instead using the floor function gives the largest index of a Fibonacci number that is not greater than Шаблон:Mvar: <math display=block>n_{\mathrm{largest}}(F) = \left\lfloor \log_\varphi \sqrt{5}(F+1/2)\right\rfloor,\ F \geq 0,</math> where <math>\log_\varphi(x) = \ln(x)/\ln(\varphi) = \log_{10}(x)/\log_{10}(\varphi)</math>, <math>\ln(\varphi) = 0.481211\ldots</math>,[15] and <math>\log_{10}(\varphi) = 0.208987\ldots</math>.[16]

Magnitude

Since Fn is asymptotic to <math>\varphi^n/\sqrt5</math>, the number of digits in Шаблон:Math is asymptotic to <math>n\log_{10}\varphi\approx 0.2090\, n</math>. As a consequence, for every integer Шаблон:Math there are either 4 or 5 Fibonacci numbers with Шаблон:Mvar decimal digits.

More generally, in the base Шаблон:Mvar representation, the number of digits in Шаблон:Math is asymptotic to <math>n\log_b\varphi = \frac{n \log \varphi}{\log b}.</math>

Limit of consecutive quotients

Johannes Kepler observed that the ratio of consecutive Fibonacci numbers converges. He wrote that "as 5 is to 8 so is 8 to 13, practically, and as 8 is to 13, so is 13 to 21 almost", and concluded that these ratios approach the golden ratio <math>\varphi\colon </math> [17][18] <math display=block>\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi.</math>

This convergence holds regardless of the starting values <math>U_0</math> and <math>U_1</math>, unless <math>U_1 = -U_0/\varphi</math>. This can be verified using Binet's formula. For example, the initial values 3 and 2 generate the sequence 3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, ... . The ratio of consecutive terms in this sequence shows the same convergence towards the golden ratio.

In general, <math>\lim_{n\to\infty}\frac{F_{n+m}}{F_n}=\varphi^m </math>, because the ratios between consecutive Fibonacci numbers approaches <math>\varphi</math>.

Файл:Fibonacci tiling of the plane and approximation to Golden Ratio.gif
Successive tilings of the plane and a graph of approximations to the golden ratio calculated by dividing each Fibonacci number by the previous

Decomposition of powers

Since the golden ratio satisfies the equation <math display=block>\varphi^2 = \varphi + 1,</math>

this expression can be used to decompose higher powers <math>\varphi^n</math> as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of <math>\varphi</math> and 1. The resulting recurrence relationships yield Fibonacci numbers as the linear coefficients: <math display=block>\varphi^n = F_n\varphi + F_{n-1}.</math> This equation can be proved by induction on Шаблон:Math: <math display=block>\varphi^{n+1} = (F_n\varphi + F_{n-1})\varphi = F_n\varphi^2 + F_{n-1}\varphi = F_n(\varphi+1) + F_{n-1}\varphi = (F_n + F_{n-1})\varphi + F_n = F_{n+1}\varphi + F_n.</math> For <math>\psi = -1/\varphi</math>, it is also the case that <math>\psi^2 = \psi + 1</math> and it is also the case that <math display=block>\psi^n = F_n\psi + F_{n-1}.</math>

These expressions are also true for Шаблон:Math if the Fibonacci sequence Fn is extended to negative integers using the Fibonacci rule <math>F_n = F_{n+2} - F_{n+1}.</math>

Identification

Binet's formula provides a proof that a positive integer Шаблон:Mvar is a Fibonacci number if and only if at least one of <math>5x^2+4</math> or <math>5x^2-4</math> is a perfect square.[19] This is because Binet's formula, which can be written as <math>F_n = (\varphi^n - (-1)^n \varphi^{-n}) / \sqrt{5}</math>, can be multiplied by <math>\sqrt{5} \varphi^n</math> and solved as a quadratic equation in <math>\varphi^n</math> via the quadratic formula:

<math display=block>\varphi^n = \frac{F_n\sqrt{5} \pm \sqrt{5{F_n}^2 + 4(-1)^n}}{2}.</math>

Comparing this to <math>\varphi^n = F_n \varphi + F_{n-1} = (F_n\sqrt{5} + F_n + 2 F_{n-1})/2</math>, it follows that

<math display=block>5{F_n}^2 + 4(-1)^n = (F_n + 2F_{n-1})^2\,.</math>

In particular, the left-hand side is a perfect square.

Matrix form

A 2-dimensional system of linear difference equations that describes the Fibonacci sequence is

<math display=block> {F_{k+2} \choose F_{k+1}} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} {F_{k+1} \choose F_{k}} </math> alternatively denoted <math display=block> \vec F_{k+1} = \mathbf{A} \vec F_{k},</math>

which yields <math>\vec F_n = \mathbf{A}^n \vec F_0</math>. The eigenvalues of the matrix Шаблон:Math are <math>\varphi=\frac12(1+\sqrt5)</math> and <math>\psi=-\varphi^{-1}=\frac12(1-\sqrt5)</math> corresponding to the respective eigenvectors <math display=block>\vec \mu={\varphi \choose 1}</math> and <math display=block>\vec\nu={-\varphi^{-1} \choose 1}.</math> As the initial value is <math display=block>\vec F_0={1 \choose 0}=\frac{1}{\sqrt{5}}\vec{\mu}-\frac{1}{\sqrt{5}}\vec{\nu},</math> it follows that the Шаблон:Mvarth term is <math display=block>\begin{align}\vec F_n &= \frac{1}{\sqrt{5}}A^n\vec\mu-\frac{1}{\sqrt{5}}A^n\vec\nu \\ &= \frac{1}{\sqrt{5}}\varphi^n\vec\mu-\frac{1}{\sqrt{5}}(-\varphi)^{-n}\vec\nu~\\ & =\cfrac{1}{\sqrt{5}}\left(\cfrac{1+\sqrt{5}}{2}\right)^n{\varphi \choose 1}-\cfrac{1}{\sqrt{5}}\left(\cfrac{1-\sqrt{5}}{2}\right)^n{-\varphi^{-1}\choose 1}, \end{align}</math> From this, the Шаблон:Mvarth element in the Fibonacci series may be read off directly as a closed-form expression: <math display=block>F_n = \cfrac{1}{\sqrt{5}}\left(\cfrac{1+\sqrt{5}}{2}\right)^n-\cfrac{1}{\sqrt{5}}\left(\cfrac{1-\sqrt{5}}{2}\right)^n.</math>

Equivalently, the same computation may be performed by diagonalization of Шаблон:Math through use of its eigendecomposition: <math display=block>\begin{align} A & = S\Lambda S^{-1} ,\\

A^n & = S\Lambda^n S^{-1},

\end{align}</math> where <math>\Lambda=\begin{pmatrix} \varphi & 0 \\ 0 & -\varphi^{-1} \end{pmatrix}</math> and <math>S=\begin{pmatrix} \varphi & -\varphi^{-1} \\ 1 & 1 \end{pmatrix}.</math> The closed-form expression for the Шаблон:Mvarth element in the Fibonacci series is therefore given by

<math display=block>\begin{align} {F_{n+1} \choose F_n} & = A^{n} {F_1 \choose F_0} \\

& = S \Lambda^n S^{-1} {F_1 \choose F_0} \\
& = S \begin{pmatrix} \varphi^n & 0 \\ 0 & (-\varphi)^{-n} \end{pmatrix} S^{-1} {F_1 \choose F_0} \\
& = \begin{pmatrix} \varphi & -\varphi^{-1} \\ 1 & 1 \end{pmatrix}
    \begin{pmatrix} \varphi^n & 0 \\ 0 & (-\varphi)^{-n} \end{pmatrix}
    \frac{1}{\sqrt{5}}\begin{pmatrix} 1 & \varphi^{-1} \\ -1 & \varphi \end{pmatrix} {1 \choose 0},

\end{align}</math>

which again yields <math display=block>F_n = \cfrac{\varphi^n-(-\varphi)^{-n}}{\sqrt{5}}.</math>

The matrix Шаблон:Math has a determinant of −1, and thus it is a 2 × 2 unimodular matrix.

This property can be understood in terms of the continued fraction representation for the golden ratio:

<math display=block>\varphi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}.</math>

The Fibonacci numbers occur as the ratio of successive convergents of the continued fraction for Шаблон:Mvar, and the matrix formed from successive convergents of any continued fraction has a determinant of +1 or −1. The matrix representation gives the following closed-form expression for the Fibonacci numbers:

<math display=block>\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}.</math>

For a given Шаблон:Mvar, this matrix can be computed in Шаблон:Math arithmetic operations, using the exponentiation by squaring method.

Taking the determinant of both sides of this equation yields Cassini's identity, <math display=block>(-1)^n = F_{n+1}F_{n-1} - {F_n}^2.</math>

Moreover, since Шаблон:Math for any square matrix Шаблон:Math, the following identities can be derived (they are obtained from two different coefficients of the matrix product, and one may easily deduce the second one from the first one by changing Шаблон:Mvar into Шаблон:Math), <math display=block>\begin{align}

{F_m}{F_n} + {F_{m-1}}{F_{n-1}} &= F_{m+n-1},\\
F_{m} F_{n+1} + F_{m-1} F_n &= F_{m+n} .

\end{align}</math>

In particular, with Шаблон:Math, <math display=block>\begin{align}

F_{2 n-1} &= {F_n}^2 + {F_{n-1}}^2\\[5pt]
F_{2 n\phantom{{}-1}}   &= (F_{n-1}+F_{n+1})F_n\\[5pt]
         &= (2 F_{n-1}+F_n)F_n\\[5pt]
         &= (2 F_{n+1}-F_n)F_n.

\end{align}</math>

These last two identities provide a way to compute Fibonacci numbers recursively in Шаблон:Math arithmetic operations. This matches the time for computing the Шаблон:Mvar-th Fibonacci number from the closed-form matrix formula, but with fewer redundant steps if one avoids recomputing an already computed Fibonacci number (recursion with memoization).[20]

Combinatorial identities

Combinatorial proofs

Most identities involving Fibonacci numbers can be proved using combinatorial arguments using the fact that <math>F_n</math> can be interpreted as the number of (possibly empty) sequences of 1s and 2s whose sum is <math>n-1</math>. This can be taken as the definition of <math>F_n</math> with the conventions <math>F_0 = 0</math>, meaning no such sequence exists whose sum is −1, and <math>F_1 = 1</math>, meaning the empty sequence "adds up" to 0. In the following, <math>|{...}|</math> is the cardinality of a set:

<math>F_0 = 0 = |\{\}|</math>
<math>F_1 = 1 = |\{()\}|</math>
<math>F_2 = 1 = |\{(1)\}|</math>
<math>F_3 = 2 = |\{(1,1),(2)\}|</math>
<math>F_4 = 3 = |\{(1,1,1),(1,2),(2,1)\}|</math>
<math>F_5 = 5 = |\{(1,1,1,1),(1,1,2),(1,2,1),(2,1,1),(2,2)\}|</math>

In this manner the recurrence relation <math display=block>F_n = F_{n-1} + F_{n-2}</math> may be understood by dividing the <math>F_n</math> sequences into two non-overlapping sets where all sequences either begin with 1 or 2: <math display=block>F_n = |\{(1,...),(1,...),...\}| + |\{(2,...),(2,...),...\}|</math> Excluding the first element, the remaining terms in each sequence sum to <math>n-2</math> or <math>n-3</math> and the cardinality of each set is <math>F_{n-1}</math> or <math>F_{n-2}</math> giving a total of <math>F_{n-1}+F_{n-2}</math> sequences, showing this is equal to <math>F_n</math>.

In a similar manner it may be shown that the sum of the first Fibonacci numbers up to the Шаблон:Mvar-th is equal to the Шаблон:Math-th Fibonacci number minus 1.Шаблон:Sfn In symbols: <math display=block>\sum_{i=1}^n F_i = F_{n+2} - 1</math>

This may be seen by dividing all sequences summing to <math>n+1</math> based on the location of the first 2. Specifically, each set consists of those sequences that start <math>(2,...), (1,2,...), ..., </math> until the last two sets <math>\{(1,1,...,1,2)\}, \{(1,1,...,1)\}</math> each with cardinality 1.

Following the same logic as before, by summing the cardinality of each set we see that

<math>F_{n+2} = F_n + F_{n-1} + ... + |\{(1,1,...,1,2)\}| + |\{(1,1,...,1)\}|</math>

... where the last two terms have the value <math>F_1 = 1</math>. From this it follows that <math>\sum_{i=1}^n F_i = F_{n+2}-1</math>.

A similar argument, grouping the sums by the position of the first 1 rather than the first 2 gives two more identities: <math display=block>\sum_{i=0}^{n-1} F_{2 i+1} = F_{2 n}</math> and <math display=block>\sum_{i=1}^{n} F_{2 i} = F_{2 n+1}-1.</math> In words, the sum of the first Fibonacci numbers with odd index up to <math>F_{2 n-1}</math> is the Шаблон:Math-th Fibonacci number, and the sum of the first Fibonacci numbers with even index up to <math>F_{2 n}</math> is the Шаблон:Math-th Fibonacci number minus 1.[21]

A different trick may be used to prove <math display=block>\sum_{i=1}^n F_i^2 = F_n F_{n+1}</math> or in words, the sum of the squares of the first Fibonacci numbers up to <math>F_n</math> is the product of the Шаблон:Mvar-th and Шаблон:Math-th Fibonacci numbers. To see this, begin with a Fibonacci rectangle of size <math>F_n \times F_{n+1}</math> and decompose it into squares of size <math>F_n, F_{n-1}, ..., F_1</math>; from this the identity follows by comparing areas:

Файл:Fibonacci Squares.svg

Symbolic method

The sequence <math>(F_n)_{n\in\mathbb N}</math> is also considered using the symbolic method.[22] More precisely, this sequence corresponds to a specifiable combinatorial class. The specification of this sequence is <math>\operatorname{Seq}(\mathcal{Z+Z^2})</math>. Indeed, as stated above, the <math>n</math>-th Fibonacci number equals the number of combinatorial compositions (ordered partitions) of <math>n-1</math> using terms 1 and 2.

It follows that the ordinary generating function of the Fibonacci sequence, <math>\sum_{i=0}^\infty F_iz^i</math>, is the rational function <math>\frac{z}{1-z-z^2}.</math>

Induction proofs

Fibonacci identities often can be easily proved using mathematical induction.

For example, reconsider <math display=block>\sum_{i=1}^n F_i = F_{n+2} - 1.</math> Adding <math>F_{n+1}</math> to both sides gives

<math>\sum_{i=1}^n F_i + F_{n+1} = F_{n+1} + F_{n+2} - 1</math>

and so we have the formula for <math>n+1</math> <math display=block>\sum_{i=1}^{n+1} F_i = F_{n+3} - 1</math>

Similarly, add <math>{F_{n+1}}^2</math> to both sides of <math display=block>\sum_{i=1}^n F_i^2 = F_n F_{n+1}</math> to give <math display=block>\sum_{i=1}^n F_i^2 + {F_{n+1}}^2 = F_{n+1}\left(F_n + F_{n+1}\right)</math> <math display=block>\sum_{i=1}^{n+1} F_i^2 = F_{n+1}F_{n+2}</math>

Binet formula proofs

The Binet formula is <math display=block>\sqrt5F_n = \varphi^n - \psi^n.</math> This can be used to prove Fibonacci identities.

For example, to prove that <math display=inline>\sum_{i=1}^n F_i = F_{n+2} - 1</math> note that the left hand side multiplied by <math>\sqrt5</math> becomes <math display=block> \begin{align} 1 +& \varphi + \varphi^2 + \dots + \varphi^n - \left(1 + \psi + \psi^2 + \dots + \psi^n \right)\\ &= \frac{\varphi^{n+1}-1}{\varphi-1} - \frac{\psi^{n+1}-1}{\psi-1}\\ &= \frac{\varphi^{n+1}-1}{-\psi} - \frac{\psi^{n+1}-1}{-\varphi}\\ &= \frac{-\varphi^{n+2}+\varphi + \psi^{n+2}-\psi}{\varphi\psi}\\ &= \varphi^{n+2}-\psi^{n+2}-(\varphi-\psi)\\ &= \sqrt5(F_{n+2}-1)\\ \end{align}</math> as required, using the facts <math display=inline>\varphi\psi =- 1</math> and <math display=inline>\varphi-\psi=\sqrt5</math> to simplify the equations.

Other identities

Numerous other identities can be derived using various methods. Here are some of them:[23]

Cassini's and Catalan's identities

Шаблон:Main Cassini's identity states that <math display=block>{F_n}^2 - F_{n+1}F_{n-1} = (-1)^{n-1}</math> Catalan's identity is a generalization: <math display=block>{F_n}^2 - F_{n+r}F_{n-r} = (-1)^{n-r}{F_r}^2</math>

d'Ocagne's identity

<math display=block>F_m F_{n+1} - F_{m+1} F_n = (-1)^n F_{m-n}</math> <math display=block>F_{2 n} = {F_{n+1}}^2 - {F_{n-1}}^2 = F_n \left (F_{n+1}+F_{n-1} \right ) = F_nL_n</math> where Шаблон:Math is the Шаблон:Mvar-th Lucas number. The last is an identity for doubling Шаблон:Mvar; other identities of this type are <math display=block>F_{3 n} = 2{F_n}^3 + 3 F_n F_{n+1} F_{n-1} = 5{F_n}^3 + 3 (-1)^n F_n</math> by Cassini's identity.

<math display=block>F_{3 n+1} = {F_{n+1}}^3 + 3 F_{n+1}{F_n}^2 - {F_n}^3</math> <math display=block>F_{3 n+2} = {F_{n+1}}^3 + 3 {F_{n+1}}^2 F_n + {F_n}^3</math> <math display=block>F_{4 n} = 4 F_n F_{n+1} \left ({F_{n+1}}^2 + 2{F_n}^2 \right ) - 3{F_n}^2 \left ({F_n}^2 + 2{F_{n+1}}^2 \right )</math> These can be found experimentally using lattice reduction, and are useful in setting up the special number field sieve to factorize a Fibonacci number.

More generally,[23]

<math display=block>F_{k n+c} = \sum_{i=0}^k {k\choose i} F_{c-i} {F_n}^i {F_{n+1}}^{k-i}.</math>

or alternatively

<math display=block>F_{k n+c} = \sum_{i=0}^k {k\choose i} F_{c+i} {F_n}^i {F_{n-1}}^{k-i}.</math>

Putting Шаблон:Math in this formula, one gets again the formulas of the end of above section Matrix form.

Generating function

The generating function of the Fibonacci sequence is the power series

<math display=block> s(z) = \sum_{k=0}^\infty F_k z^k = 0 + z + z^2 + 2z^3 + 3z^4 + \dots. </math>

This series is convergent for any complex number <math>z</math> satisfying <math>|z| < 1/\varphi,</math> and its sum has a simple closed form:[24]

<math display=block>s(z)=\frac{z}{1-z-z^2}.</math>

This can be proved by multiplying by <math display="inline">(1-z-z^2)</math>: <math display=block>\begin{align} (1 - z- z^2) s(z)

 &= \sum_{k=0}^{\infty} F_k z^k - \sum_{k=0}^{\infty} F_k z^{k+1} - \sum_{k=0}^{\infty} F_k z^{k+2} \\
 &= \sum_{k=0}^{\infty} F_k z^k - \sum_{k=1}^{\infty} F_{k-1} z^k - \sum_{k=2}^{\infty} F_{k-2} z^k \\
 &= 0z^0 + 1z^1 - 0z^1 + \sum_{k=2}^{\infty} (F_k - F_{k-1} - F_{k-2}) z^k \\
 &= z,

\end{align}</math>

where all terms involving <math>z^k</math> for <math>k \ge 2</math> cancel out because of the defining Fibonacci recurrence relation.

The partial fraction decomposition is given by <math display=block>s(z) = \frac{1}{\sqrt5}\left(\frac{1}{1 - \varphi z} - \frac{1}{1 - \psi z}\right)</math> where <math display=inline>\varphi = \tfrac12\left(1 + \sqrt{5}\right)</math> is the golden ratio and <math>\psi = \tfrac12\left(1 - \sqrt{5}\right)</math> is its conjugate.

The related function <math display=inline>z \mapsto -s\left(-1/z\right)</math> is the generating function for the negafibonacci numbers, and <math>s(z)</math> satisfies the functional equation

<math display=block>s(z) = s\!\left(-\frac{1}{z}\right).</math>

Using <math>z</math> equal to any of 0.01, 0.001, 0.0001, etc. lays out the first Fibonacci numbers in the decimal expansion of <math>s(z)</math>. For example, <math>s(0.001) = \frac{0.001}{0.998999} = \frac{1000}{998999} = 0.001001002003005008013021\ldots.</math>

Reciprocal sums

Infinite sums over reciprocal Fibonacci numbers can sometimes be evaluated in terms of theta functions. For example, the sum of every odd-indexed reciprocal Fibonacci number can be written as <math display=block>\sum_{k=1}^\infty \frac{1}{F_{2 k-1}} = \frac{\sqrt{5}}{4} \; \vartheta_2\!\left(0, \frac{3-\sqrt 5}{2}\right)^2 ,</math>

and the sum of squared reciprocal Fibonacci numbers as <math display=block>\sum_{k=1}^\infty \frac{1}{{F_k}^2} = \frac{5}{24} \!\left(\vartheta_2\!\left(0, \frac{3-\sqrt 5}{2}\right)^4 - \vartheta_4\!\left(0, \frac{3-\sqrt 5}{2}\right)^4 + 1 \right).</math>

If we add 1 to each Fibonacci number in the first sum, there is also the closed form <math display=block>\sum_{k=1}^\infty \frac{1}{1+F_{2 k-1}} = \frac{\sqrt{5}}{2},</math>

and there is a nested sum of squared Fibonacci numbers giving the reciprocal of the golden ratio, <math display=block>\sum_{k=1}^\infty \frac{(-1)^{k+1}}{\sum_{j=1}^k {F_{j}}^2} = \frac{\sqrt{5}-1}{2} .</math>

The sum of all even-indexed reciprocal Fibonacci numbers is[25] <math display=block>\sum_{k=1}^{\infty} \frac{1}{F_{2 k}} = \sqrt{5} \left(L(\psi^2) - L(\psi^4)\right) </math> with the Lambert series <math>\textstyle L(q) := \sum_{k=1}^{\infty} \frac{q^k}{1-q^k} ,</math> since <math>\textstyle \frac{1}{F_{2 k}} = \sqrt{5} \left(\frac{\psi^{2 k}}{1-\psi^{2 k}} - \frac{\psi^{4 k}}{1-\psi^{4 k}} \right)\!.</math>

So the reciprocal Fibonacci constant is[26] <math display=block>\sum_{k=1}^{\infty} \frac{1}{F_k} = \sum_{k=1}^\infty \frac{1}{F_{2 k-1}} + \sum_{k=1}^{\infty} \frac {1}{F_{2 k}} = 3.359885666243 \dots</math>

Moreover, this number has been proved irrational by Richard André-Jeannin.[27]

Millin's series gives the identity[28] <math display=block>\sum_{k=0}^{\infty} \frac{1}{F_{2^k}} = \frac{7 - \sqrt{5}}{2},</math> which follows from the closed form for its partial sums as Шаблон:Mvar tends to infinity: <math display=block>\sum_{k=0}^N \frac{1}{F_{2^k}} = 3 - \frac{F_{2^N-1}}{F_{2^N}}.</math>

Primes and divisibility

Divisibility properties

Every third number of the sequence is even (a multiple of <math>F_3=2</math>) and, more generally, every Шаблон:Mvar-th number of the sequence is a multiple of Fk. Thus the Fibonacci sequence is an example of a divisibility sequence. In fact, the Fibonacci sequence satisfies the stronger divisibility property[29][30] <math display=block>\gcd(F_a,F_b,F_c,\ldots) = F_{\gcd(a,b,c,\ldots)}\,</math> where Шаблон:Math is the greatest common divisor function.

In particular, any three consecutive Fibonacci numbers are pairwise coprime because both <math>F_1=1</math> and <math>F_2 = 1</math>. That is,

<math>\gcd(F_n, F_{n+1}) = \gcd(F_n, F_{n+2}) = \gcd(F_{n+1}, F_{n+2}) = 1</math>

for every Шаблон:Mvar.

Every prime number Шаблон:Mvar divides a Fibonacci number that can be determined by the value of Шаблон:Mvar modulo 5. If Шаблон:Mvar is congruent to 1 or 4 modulo 5, then Шаблон:Mvar divides Шаблон:Math, and if Шаблон:Mvar is congruent to 2 or 3 modulo 5, then, Шаблон:Mvar divides Шаблон:Math. The remaining case is that Шаблон:Math, and in this case Шаблон:Mvar divides Fp.

<math display=block>\begin{cases} p =5 & \Rightarrow p \mid F_{p}, \\ p \equiv \pm1 \pmod 5 & \Rightarrow p \mid F_{p-1}, \\ p \equiv \pm2 \pmod 5 & \Rightarrow p \mid F_{p+1}.\end{cases}</math>

These cases can be combined into a single, non-piecewise formula, using the Legendre symbol:[31] <math display=block>p \mid F_{p \;-\, \left(\frac{5}{p}\right)}.</math>

Primality testing

The above formula can be used as a primality test in the sense that if <math display=block>n \mid F_{n \;-\, \left(\frac{5}{n}\right)},</math> where the Legendre symbol has been replaced by the Jacobi symbol, then this is evidence that Шаблон:Mvar is a prime, and if it fails to hold, then Шаблон:Mvar is definitely not a prime. If Шаблон:Mvar is composite and satisfies the formula, then Шаблон:Mvar is a Fibonacci pseudoprime. When Шаблон:Mvar is largeШаблон:Sndsay a 500-bit numberШаблон:Sndthen we can calculate Шаблон:Math efficiently using the matrix form. Thus

<math display=block> \begin{pmatrix} F_{m+1} & F_m \\ F_m & F_{m-1} \end{pmatrix} \equiv \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^m \pmod n.</math> Here the matrix power Шаблон:Math is calculated using modular exponentiation, which can be adapted to matrices.[32]

Fibonacci primes

Шаблон:Main

A Fibonacci prime is a Fibonacci number that is prime. The first few are:[33]

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ...

Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many.[34]

Шаблон:Math is divisible by Шаблон:Math, so, apart from Шаблон:Math, any Fibonacci prime must have a prime index. As there are arbitrarily long runs of composite numbers, there are therefore also arbitrarily long runs of composite Fibonacci numbers.

No Fibonacci number greater than Шаблон:Math is one greater or one less than a prime number.[35]

The only nontrivial square Fibonacci number is 144.[36] Attila Pethő proved in 2001 that there is only a finite number of perfect power Fibonacci numbers.[37] In 2006, Y. Bugeaud, M. Mignotte, and S. Siksek proved that 8 and 144 are the only such non-trivial perfect powers.[38]

1, 3, 21, and 55 are the only triangular Fibonacci numbers, which was conjectured by Vern Hoggatt and proved by Luo Ming.[39]

No Fibonacci number can be a perfect number.[40] More generally, no Fibonacci number other than 1 can be multiply perfect,[41] and no ratio of two Fibonacci numbers can be perfect.[42]

Prime divisors

With the exceptions of 1, 8 and 144 (Шаблон:Math, Шаблон:Math and Шаблон:Math) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem).[43] As a result, 8 and 144 (Шаблон:Math and Шаблон:Math) are the only Fibonacci numbers that are the product of other Fibonacci numbers.[44]

The divisibility of Fibonacci numbers by a prime Шаблон:Mvar is related to the Legendre symbol <math>\left(\tfrac{p}{5}\right)</math> which is evaluated as follows: <math display=block>\left(\frac{p}{5}\right) = \begin{cases} 0 & \text{if } p = 5\\ 1 & \text{if } p \equiv \pm 1 \pmod 5\\ -1 & \text{if } p \equiv \pm 2 \pmod 5.\end{cases}</math>

If Шаблон:Mvar is a prime number then <math display=block> F_p \equiv \left(\frac{p}{5}\right) \pmod p \quad \text{and}\quad F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod p.</math>[45]Шаблон:Sfn

For example, <math display=block>\begin{align} (\tfrac{2}{5}) &= -1, &F_3 &= 2, &F_2&=1, \\ (\tfrac{3}{5}) &= -1, &F_4 &= 3,&F_3&=2, \\ (\tfrac{5}{5}) &= 0, &F_5 &= 5, \\ (\tfrac{7}{5}) &= -1, &F_8 &= 21,&F_7&=13, \\ (\tfrac{11}{5})& = +1, &F_{10}& = 55, &F_{11}&=89. \end{align}</math>

It is not known whether there exists a prime Шаблон:Mvar such that

<math display=block>F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod{p^2}.</math>

Such primes (if there are any) would be called Wall–Sun–Sun primes.

Also, if Шаблон:Math is an odd prime number then:Шаблон:Sfn <math display=block>5 {F_{\frac{p \pm 1}{2}}}^2 \equiv \begin{cases} \tfrac{1}{2} \left (5\left(\frac{p}{5}\right)\pm 5 \right ) \pmod p & \text{if } p \equiv 1 \pmod 4\\ \tfrac{1}{2} \left (5\left(\frac{p}{5}\right)\mp 3 \right ) \pmod p & \text{if } p \equiv 3 \pmod 4. \end{cases}</math>

Example 1. Шаблон:Math, in this case Шаблон:Math and we have: <math display=block>(\tfrac{7}{5}) = -1: \qquad \tfrac{1}{2}\left (5(\tfrac{7}{5})+3 \right ) =-1, \quad \tfrac{1}{2} \left (5(\tfrac{7}{5})-3 \right )=-4.</math> <math display=block>F_3=2 \text{ and } F_4=3.</math> <math display=block>5{F_3}^2=20\equiv -1 \pmod {7}\;\;\text{ and }\;\;5{F_4}^2=45\equiv -4 \pmod {7}</math>

Example 2. Шаблон:Math, in this case Шаблон:Math and we have: <math display=block>(\tfrac{11}{5}) = +1: \qquad \tfrac{1}{2}\left (5(\tfrac{11}{5})+3 \right )=4, \quad \tfrac{1}{2} \left (5(\tfrac{11}{5})- 3 \right )=1.</math> <math display=block>F_5=5 \text{ and } F_6=8.</math> <math display=block>5{F_5}^2=125\equiv 4 \pmod {11} \;\;\text{ and }\;\;5{F_6}^2=320\equiv 1 \pmod {11}</math>

Example 3. Шаблон:Math, in this case Шаблон:Math and we have: <math display=block>(\tfrac{13}{5}) = -1: \qquad \tfrac{1}{2}\left (5(\tfrac{13}{5})-5 \right ) =-5, \quad \tfrac{1}{2}\left (5(\tfrac{13}{5})+ 5 \right )=0.</math> <math display=block>F_6=8 \text{ and } F_7=13.</math> <math display=block>5{F_6}^2=320\equiv -5 \pmod {13} \;\;\text{ and }\;\;5{F_7}^2=845\equiv 0 \pmod {13}</math>

Example 4. Шаблон:Math, in this case Шаблон:Math and we have: <math display=block>(\tfrac{29}{5}) = +1: \qquad \tfrac{1}{2}\left (5(\tfrac{29}{5})-5 \right )=0, \quad \tfrac{1}{2}\left (5(\tfrac{29}{5})+5 \right )=5.</math> <math display=block>F_{14}=377 \text{ and } F_{15}=610.</math> <math display=block>5{F_{14}}^2=710645\equiv 0 \pmod {29} \;\;\text{ and }\;\;5{F_{15}}^2=1860500\equiv 5 \pmod {29}</math>

For odd Шаблон:Mvar, all odd prime divisors of Шаблон:Math are congruent to 1 modulo 4, implying that all odd divisors of Шаблон:Math (as the products of odd prime divisors) are congruent to 1 modulo 4.Шаблон:Sfn

For example, <math display=block>F_1 = 1,\ F_3 = 2,\ F_5 = 5,\ F_7 = 13,\ F_9 = 34 = 2 \cdot 17,\ F_{11} = 89,\ F_{13} = 233,\ F_{15} = 610 = 2 \cdot 5 \cdot 61.</math>

All known factors of Fibonacci numbers Шаблон:Math for all Шаблон:Math are collected at the relevant repositories.[46][47]

Periodicity modulo n

Шаблон:Main

If the members of the Fibonacci sequence are taken mod Шаблон:Mvar, the resulting sequence is periodic with period at most Шаблон:Math.[48] The lengths of the periods for various Шаблон:Mvar form the so-called Pisano periods.[49] Determining a general formula for the Pisano periods is an open problem, which includes as a subproblem a special instance of the problem of finding the multiplicative order of a modular integer or of an element in a finite field. However, for any particular Шаблон:Mvar, the Pisano period may be found as an instance of cycle detection.

Generalizations

Шаблон:Main

The Fibonacci sequence is one of the simplest and earliest known sequences defined by a recurrence relation, and specifically by a linear difference equation. All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients.

Some specific examples that are close, in some sense, to the Fibonacci sequence include:

Applications

Mathematics

Файл:Pascal triangle fibonacci.svg
The Fibonacci numbers are the sums of the diagonals (shown in red) of a left-justified Pascal's triangle.

The Fibonacci numbers occur as the sums of binomial coefficients in the "shallow" diagonals of Pascal's triangle:Шаблон:Sfn <math display=block>F_n = \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \binom{n-k-1}{k}.</math> This can be proved by expanding the generating function <math display=block>\frac{x}{1-x-x^2} = x + x^2(1+x) + x^3(1+x)^2 + \dots + x^{k+1}(1+x)^k + \dots = \sum\limits_{n=0}^\infty F_n x^n</math> and collecting like terms of <math>x^n</math>.

To see how the formula is used, we can arrange the sums by the number of terms present:

Шаблон:Math Шаблон:Math
Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math
Шаблон:Math Шаблон:Math Шаблон:Math

which is <math>\binom{5}{0}+\binom{4}{1}+\binom{3}{2}</math>, where we are choosing the positions of Шаблон:Mvar twos from Шаблон:Math terms.

Файл:Fibonacci climbing stairs.svg
Use of the Fibonacci sequence to count Шаблон:Nowrap compositions

These numbers also give the solution to certain enumerative problems,[51] the most common of which is that of counting the number of ways of writing a given number Шаблон:Mvar as an ordered sum of 1s and 2s (called compositions); there are Шаблон:Math ways to do this (equivalently, it's also the number of domino tilings of the <math>2\times n</math> rectangle). For example, there are Шаблон:Math ways one can climb a staircase of 5 steps, taking one or two steps at a time:

Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math Шаблон:Math
Шаблон:Math Шаблон:Math Шаблон:Math

The figure shows that 8 can be decomposed into 5 (the number of ways to climb 4 steps, followed by a single-step) plus 3 (the number of ways to climb 3 steps, followed by a double-step). The same reasoning is applied recursively until a single step, of which there is only one way to climb.

The Fibonacci numbers can be found in different ways among the set of binary strings, or equivalently, among the subsets of a given set.

Computer science

Файл:Fibonacci Tree 6.svg
Fibonacci tree of height 6. Balance factors green; heights red.
The keys in the left spine are Fibonacci numbers.

Nature

Шаблон:Further Шаблон:See also

Файл:FibonacciChamomile.PNG
Yellow chamomile head showing the arrangement in 21 (blue) and 13 (cyan) spirals. Such arrangements involving consecutive Fibonacci numbers appear in a wide variety of plants.

Fibonacci sequences appear in biological settings,[61] such as branching in trees, arrangement of leaves on a stem, the fruitlets of a pineapple,[62] the flowering of artichoke, the arrangement of a pine cone,[63] and the family tree of honeybees.[64][65] Kepler pointed out the presence of the Fibonacci sequence in nature, using it to explain the (golden ratio-related) pentagonal form of some flowers.Шаблон:Sfn Field daisies most often have petals in counts of Fibonacci numbers.Шаблон:Sfn In 1830, K. F. Schimper and A. Braun discovered that the parastichies (spiral phyllotaxis) of plants were frequently expressed as fractions involving Fibonacci numbers.[66]

Przemysław Prusinkiewicz advanced the idea that real instances can in part be understood as the expression of certain algebraic constraints on free groups, specifically as certain Lindenmayer grammars.[67]

Файл:SunflowerModel.svg
Illustration of Vogel's model for Шаблон:Math

A model for the pattern of florets in the head of a sunflower was proposed by Шаблон:Ill in 1979.[68] This has the form

<math display=block>\theta = \frac{2\pi}{\varphi^2} n,\ r = c \sqrt{n}</math>

where Шаблон:Mvar is the index number of the floret and Шаблон:Mvar is a constant scaling factor; the florets thus lie on Fermat's spiral. The divergence angle, approximately 137.51°, is the golden angle, dividing the circle in the golden ratio. Because this ratio is irrational, no floret has a neighbor at exactly the same angle from the center, so the florets pack efficiently. Because the rational approximations to the golden ratio are of the form Шаблон:Math, the nearest neighbors of floret number Шаблон:Mvar are those at Шаблон:Math for some index Шаблон:Mvar, which depends on Шаблон:Mvar, the distance from the center. Sunflowers and similar flowers most commonly have spirals of florets in clockwise and counter-clockwise directions in the amount of adjacent Fibonacci numbers,Шаблон:Sfn typically counted by the outermost range of radii.[69]

Fibonacci numbers also appear in the pedigrees of idealized honeybees, according to the following rules:

  • If an egg is laid by an unmated female, it hatches a male or drone bee.
  • If, however, an egg was fertilized by a male, it hatches a female.

Thus, a male bee always has one parent, and a female bee has two. If one traces the pedigree of any male bee (1 bee), he has 1 parent (1 bee), 2 grandparents, 3 great-grandparents, 5 great-great-grandparents, and so on. This sequence of numbers of parents is the Fibonacci sequence. The number of ancestors at each level, Шаблон:Math, is the number of female ancestors, which is Шаблон:Math, plus the number of male ancestors, which is Шаблон:Math.[70] This is under the unrealistic assumption that the ancestors at each level are otherwise unrelated.

Файл:X chromosome ancestral line Fibonacci sequence.svg
The number of possible ancestors on the X chromosome inheritance line at a given ancestral generation follows the Fibonacci sequence. (After Hutchison, L. "Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships".[71])

It has been noticed that the number of possible ancestors on the human X chromosome inheritance line at a given ancestral generation also follows the Fibonacci sequence.[71] A male individual has an X chromosome, which he received from his mother, and a Y chromosome, which he received from his father. The male counts as the "origin" of his own X chromosome (<math>F_1=1</math>), and at his parents' generation, his X chromosome came from a single parent Шаблон:Nowrap. The male's mother received one X chromosome from her mother (the son's maternal grandmother), and one from her father (the son's maternal grandfather), so two grandparents contributed to the male descendant's X chromosome Шаблон:Nowrap. The maternal grandfather received his X chromosome from his mother, and the maternal grandmother received X chromosomes from both of her parents, so three great-grandparents contributed to the male descendant's X chromosome Шаблон:Nowrap. Five great-great-grandparents contributed to the male descendant's X chromosome Шаблон:Nowrap, etc. (This assumes that all ancestors of a given descendant are independent, but if any genealogy is traced far enough back in time, ancestors begin to appear on multiple lines of the genealogy, until eventually a population founder appears on all lines of the genealogy.)

Other

  • In optics, when a beam of light shines at an angle through two stacked transparent plates of different materials of different refractive indexes, it may reflect off three surfaces: the top, middle, and bottom surfaces of the two plates. The number of different beam paths that have Шаблон:Mvar reflections, for Шаблон:Math, is the Шаблон:Mvar-th Fibonacci number. (However, when Шаблон:Math, there are three reflection paths, not two, one for each of the three surfaces.)Шаблон:Sfn
  • Fibonacci retracement levels are widely used in technical analysis for financial market trading.
  • Since the conversion factor 1.609344 for miles to kilometers is close to the golden ratio, the decomposition of distance in miles into a sum of Fibonacci numbers becomes nearly the kilometer sum when the Fibonacci numbers are replaced by their successors. This method amounts to a radix 2 number register in golden ratio base Шаблон:Mvar being shifted. To convert from kilometers to miles, shift the register down the Fibonacci sequence instead.[72]
  • The measured values of voltages and currents in the infinite resistor chain circuit (also called the resistor ladder or infinite series-parallel circuit) follow the Fibonacci sequence. The intermediate results of adding the alternating series and parallel resistances yields fractions composed of consecutive Fibonacci numbers. The equivalent resistance of the entire circuit equals the golden ratio.[73]
  • Brasch et al. 2012 show how a generalized Fibonacci sequence also can be connected to the field of economics.[74] In particular, it is shown how a generalized Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable. The procedure is illustrated in an example often referred to as the Brock–Mirman economic growth model.
  • Mario Merz included the Fibonacci sequence in some of his artworks beginning in 1970.Шаблон:Sfn
  • Joseph Schillinger (1895–1943) developed a system of composition which uses Fibonacci intervals in some of its melodies; he viewed these as the musical counterpart to the elaborate harmony evident within nature.Шаблон:Sfn See also Шаблон:Slink.

See also

References

Explanatory footnotes

Шаблон:Notelist

Citations

Шаблон:Reflist

Works cited

External links

Шаблон:Wikiquote Шаблон:Wikibooks

Шаблон:Classes of natural numbers Шаблон:Metallic ratios Шаблон:Series (mathematics) Шаблон:Fibonacci Шаблон:Authority control Шаблон:Interwiki extra

  1. 1,0 1,1 Шаблон:Cite OEIS
  2. 2,0 2,1 2,2 Шаблон:Citation
  3. 3,0 3,1 Шаблон:Citation
  4. 4,0 4,1 Шаблон:Citation
  5. Шаблон:Citation
  6. Шаблон:Citation
  7. Шаблон:Citation
  8. Шаблон:Citation
  9. Шаблон:Citation
  10. Шаблон:Citation
  11. Шаблон:Citation
  12. Шаблон:Citation
  13. Шаблон:Citation
  14. Шаблон:Citation
  15. Шаблон:Cite OEIS
  16. Шаблон:Cite OEIS
  17. Шаблон:Citation
  18. Шаблон:Citation
  19. Шаблон:Citation
  20. Шаблон:Citation
  21. Шаблон:Citation
  22. Шаблон:Citation
  23. 23,0 23,1 23,2 Шаблон:MathWorld
  24. Шаблон:Citation
  25. Landau (1899) quoted according Borwein, Page 95, Exercise 3b.
  26. Шаблон:Cite OEIS
  27. Шаблон:Citation
  28. Шаблон:Citation
  29. Шаблон:Citation
  30. Шаблон:Citation
  31. Шаблон:Citation. Williams calls this property "well known".
  32. Prime Numbers, Richard Crandall, Carl Pomerance, Springer, second edition, 2005, p. 142.
  33. Шаблон:Cite OEIS
  34. Шаблон:Citation
  35. Шаблон:Citation
  36. Шаблон:Citation
  37. Шаблон:Citation
  38. Шаблон:Citation
  39. Шаблон:Citation
  40. Шаблон:Citation
  41. Шаблон:Citation
  42. Шаблон:Citation
  43. Шаблон:Citation
  44. Шаблон:Cite OEIS
  45. Шаблон:Citation
  46. Шаблон:Citation collects all known factors of Шаблон:Math with Шаблон:Math.
  47. Шаблон:Citation collects all known factors of Шаблон:Math with Шаблон:Math.
  48. Шаблон:Citation
  49. Шаблон:Cite OEIS
  50. Шаблон:Citation
  51. Шаблон:Citation
  52. Шаблон:Citation
  53. Шаблон:Citation
  54. Шаблон:Citation; see especially Lemma 8.2 (Ring Lemma), pp. 73–74, and Appendix B, The Ring Lemma, pp. 318–321.
  55. Шаблон:Citation
  56. Шаблон:Citation English translation by Myron J. Ricci in Soviet Mathematics - Doklady, 3:1259–1263, 1962.
  57. Шаблон:Citation
  58. Шаблон:Citation
  59. Шаблон:Citation
  60. Шаблон:Citation
  61. Шаблон:Citation
  62. Шаблон:Citation
  63. Шаблон:Citation
  64. Шаблон:Citation
  65. Шаблон:Citation
  66. Шаблон:Citation
  67. Шаблон:Citation
  68. Шаблон:Citation
  69. Шаблон:Citation
  70. Шаблон:Citation
  71. 71,0 71,1 Шаблон:Citation
  72. Шаблон:Citation
  73. Шаблон:Citation
  74. Шаблон:Citation