Английская Википедия:Fibration

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.

Fibrations are used, for example, in Postnikov systems or obstruction theory.

In this article, all mappings are continuous mappings between topological spaces.

Formal definitions

Homotopy lifting property

A mapping <math>p \colon E \to B</math> satisfies the homotopy lifting property for a space <math>X</math> if:

  • for every homotopy <math>h \colon X \times [0, 1] \to B</math> and
  • for every mapping (also called lift) <math>\tilde h_0 \colon X \to E</math> lifting <math>h|_{X \times 0} = h_0</math> (i.e. <math>h_0 = p \circ \tilde h_0</math>)

there exists a (not necessarily unique) homotopy <math>\tilde h \colon X \times [0, 1] \to E</math> lifting <math>h</math> (i.e. <math>h = p \circ \tilde h</math>) with <math>\tilde h_0 = \tilde h|_{X \times 0}.</math>

The following commutative diagram shows the situation: Шаблон:R

Файл:Homotopie-Hochhebungseigenschaft.svg

Fibration

A fibration (also called Hurewicz fibration) is a mapping <math>p \colon E \to B</math> satisfying the homotopy lifting property for all spaces <math>X.</math> The space <math>B</math> is called base space and the space <math>E</math> is called total space. The fiber over <math>b \in B</math> is the subspace <math>F_b = p^{-1}(b) \subseteq E.</math>Шаблон:R

Serre fibration

A Serre fibration (also called weak fibration) is a mapping <math>p \colon E \to B</math> satisfying the homotopy lifting property for all CW-complexes.Шаблон:R

Every Hurewicz fibration is a Serre fibration.

Quasifibration

A mapping <math>p \colon E \to B</math> is called quasifibration, if for every <math>b \in B,</math> <math>e \in p^{-1}(b)</math> and <math>i \geq 0</math> holds that the induced mapping <math>p_* \colon \pi_i(E, p^{-1}(b), e) \to \pi_i(B, b)</math> is an isomorphism.

Every Serre fibration is a quasifibration.Шаблон:R

Examples

  • The projection onto the first factor <math>p \colon B \times F \to B</math> is a fibration. That is, trivial bundles are fibrations.
  • Every covering <math>p \colon E \to B</math> is a fibration. Specifically, for every homotopy <math>h \colon X \times [0, 1] \to B</math> and every lift <math>\tilde h_0 \colon X \to E</math> there exists a uniquely defined lift <math>\tilde h \colon X \times [0,1] \to E</math> with <math>p \circ \tilde h = h.</math>Шаблон:R Шаблон:R
  • Every fiber bundle <math>p \colon E \to B</math> satisfies the homotopy lifting property for every CW-complex.Шаблон:R
  • A fiber bundle with a paracompact and Hausdorff base space satisfies the homotopy lifting property for all spaces.Шаблон:R
  • An example for a fibration, which is not a fiber bundle, is given by the mapping <math>i^* \colon X^{I^k} \to X^{\partial I^k}</math> induced by the inclusion <math>i \colon \partial I^k \to I^k</math> where <math>k \in \N,</math> <math>X</math> a topological space and <math>X^{A} = \{f \colon A \to X\}</math> is the space of all continuous mappings with the compact-open topology.Шаблон:R
  • The Hopf fibration <math>S^1 \to S^3 \to S^2</math> is a non trivial fiber bundle and specifically a Serre fibration.

Basic concepts

Fiber homotopy equivalence

A mapping <math>f \colon E_1 \to E_2</math> between total spaces of two fibrations <math>p_1 \colon E_1 \to B</math> and <math>p_2 \colon E_2 \to B</math> with the same base space is a fibration homomorphism if the following diagram commutes:

Файл:Fibration homomorphism.svg

The mapping <math>f</math> is a fiber homotopy equivalence if in addition a fibration homomorphism <math>g \colon E_2 \to E_1</math> exists, such that the mappings <math>f \circ g</math> and <math>g \circ f</math> are homotopic, by fibration homomorphisms, to the identities <math>\operatorname{Id}_{E_2}</math> and <math>\operatorname{Id}_{E_1}.</math> Шаблон:R

Pullback fibration

Given a fibration <math>p \colon E \to B</math> and a mapping <math>f \colon A \to B</math>, the mapping <math>p_f \colon f^*(E) \to A</math> is a fibration, where <math>f^*(E) = \{(a, e) \in A \times E | f(a) = p(e)\}</math> is the pullback and the projections of <math>f^*(E)</math> onto <math>A</math> and <math>E</math> yield the following commutative diagram:

Файл:Pullback fibration.svg

The fibration <math>p_f</math> is called the pullback fibration or induced fibration.Шаблон:R

Pathspace fibration

With the pathspace construction, any continuous mapping can be extended to a fibration by enlarging its domain to a homotopy equivalent space. This fibration is called pathspace fibration.

The total space <math>E_f</math> of the pathspace fibration for a continuous mapping <math>f \colon A \to B</math> between topological spaces consists of pairs <math>(a, \gamma)</math> with <math>a \in A</math> and paths <math>\gamma \colon I \to B</math> with starting point <math>\gamma (0) = f(a),</math> where <math>I = [0, 1]</math> is the unit interval. The space <math>E_f = \{ (a, \gamma) \in A \times B^I | \gamma (0) = f(a) \}</math> carries the subspace topology of <math>A \times B^I,</math> where <math>B^I</math> describes the space of all mappings <math>I \to B</math> and carries the compact-open topology.

The pathspace fibration is given by the mapping <math>p \colon E_f \to B</math> with <math>p(a, \gamma) = \gamma (1).</math> The fiber <math>F_f</math> is also called the homotopy fiber of <math>f</math> and consists of the pairs <math>(a, \gamma)</math> with <math>a \in A</math> and paths <math>\gamma \colon [0, 1] \to B,</math> where <math>\gamma(0) = f(a)</math> and <math>\gamma(1) = b_0 \in B</math> holds.

For the special case of the inclusion of the base point <math>i \colon b_0 \to B</math>, an important example of the pathspace fibration emerges. The total space <math>E_i</math> consists of all paths in <math>B</math> which starts at <math>b_0.</math> This space is denoted by <math>PB</math> and is called path space. The pathspace fibration <math>p \colon PB \to B</math> maps each path to its endpoint, hence the fiber <math>p^{-1}(b_0)</math> consists of all closed paths. The fiber is denoted by <math>\Omega B</math> and is called loop space.Шаблон:R

Properties

  • The fibers <math>p^{-1}(b)</math> over <math>b \in B</math> are homotopy equivalent for each path component of <math>B.</math>Шаблон:R
  • For a homotopy <math>f \colon [0, 1] \times A \to B</math> the pullback fibrations <math>f^*_0(E) \to A</math> and <math>f^*_1(E) \to A</math> are fiber homotopy equivalent.Шаблон:R
  • If the base space <math>B</math> is contractible, then the fibration <math>p \colon E \to B</math> is fiber homotopy equivalent to the product fibration <math>B \times F \to B.</math>Шаблон:R
  • The pathspace fibration of a fibration <math>p \colon E \to B</math> is very similar to itself. More precisely, the inclusion <math>E \hookrightarrow E_p</math> is a fiber homotopy equivalence.Шаблон:R
  • For a fibration <math>p \colon E \to B</math> with fiber <math>F</math> and contractible total space, there is a weak homotopy equivalence <math>F \to \Omega B.</math>Шаблон:R

Puppe sequence

For a fibration <math>p \colon E \to B</math> with fiber <math>F</math> and base point <math>b_0 \in B</math> the inclusion <math>F \hookrightarrow F_p</math> of the fiber into the homotopy fiber is a homotopy equivalence. The mapping <math>i \colon F_p \to E</math> with <math>i (e, \gamma) = e</math>, where <math>e \in E</math> and <math>\gamma \colon I \to B</math> is a path from <math>p(e)</math> to <math>b_0</math> in the base space, is a fibration. Specifically it is the pullback fibration of the pathspace fibration <math>PB \to B</math>. This procedure can now be applied again to the fibration <math>i</math> and so on. This leads to a long sequence:

<math> \cdots \to F_j \to F_i \xrightarrow j F_p \xrightarrow i E \xrightarrow p B.</math>

The fiber of <math>i</math> over a point <math>e_0 \in p^{-1}(b_0)</math> consists of the pairs <math>(e_0, \gamma)</math> with closed paths <math>\gamma</math> and starting point <math>b_0</math>, i.e. the loop space <math>\Omega B</math>. The inclusion <math>\Omega B \to F</math> is a homotopy equivalence and iteration yields the sequence:

<math>\cdots \Omega^2B \to \Omega F \to \Omega E \to \Omega B \to F \to E \to B.</math>

Due to the duality of fibration and cofibration, there also exists a sequence of cofibrations. These two sequences are known as the Puppe sequences or the sequences of fibrations and cofibrations.Шаблон:R

Principal fibration

A fibration <math>p \colon E \to B</math> with fiber <math>F</math> is called principal, if there exists a commutative diagram:

Файл:Principal fibration.svg

The bottom row is a sequence of fibrations and the vertical mappings are weak homotopy equivalences. Principal fibrations play an important role in Postnikov towers.Шаблон:R

Long exact sequence of homotopy groups

For a Serre fibration <math>p \colon E \to B</math> there exists a long exact sequence of homotopy groups. For base points <math>b_0 \in B</math> and <math>x_0 \in F = p^{-1}(b_0)</math> this is given by:

<math>\cdots \rightarrow \pi_n(F,x_0) \rightarrow \pi_n(E, x_0) \rightarrow \pi_n(B, b_0) \rightarrow \pi_{n - 1}(F, x_0) \rightarrow </math> <math>\cdots \rightarrow \pi_0(F, x_0) \rightarrow \pi_0(E, x_0).</math>

The homomorphisms <math>\pi_n(F, x_0) \rightarrow \pi_n(E, x_0)</math> and <math>\pi_n(E, x_0) \rightarrow \pi_n(B, b_0)</math> are the induced homomorphisms of the inclusion <math>i \colon F \hookrightarrow E</math> and the projection <math>p \colon E \rightarrow B.</math>Шаблон:R

Hopf fibration

Hopf fibrations are a family of fiber bundles whose fiber, total space and base space are spheres:

<math>S^0 \hookrightarrow S^1 \rightarrow S^1,</math>

<math>S^1 \hookrightarrow S^3 \rightarrow S^2,</math>

<math>S^3 \hookrightarrow S^7 \rightarrow S^4,</math>

<math>S^7 \hookrightarrow S^{15} \rightarrow S^8.</math>

The long exact sequence of homotopy groups of the hopf fibration <math>S^1 \hookrightarrow S^3 \rightarrow S^2</math> yields:

<math>\cdots \rightarrow \pi_n(S^1,x_0) \rightarrow \pi_n(S^3, x_0) \rightarrow \pi_n(S^2, b_0) \rightarrow \pi_{n - 1}(S^1, x_0) \rightarrow </math> <math>\cdots \rightarrow \pi_1(S^1, x_0) \rightarrow \pi_1(S^3, x_0) \rightarrow \pi_1(S^2, b_0).</math>

This sequence splits into short exact sequences, as the fiber <math>S^1</math> in <math>S^3</math> is contractible to a point:

<math>0 \rightarrow \pi_i(S^3) \rightarrow \pi_i(S^2) \rightarrow \pi_{i-1}(S^1) \rightarrow 0.</math>

This short exact sequence splits because of the suspension homomorphism <math> \phi \colon \pi_{i - 1}(S^1) \to \pi_i(S^2)</math> and there are isomorphisms:

<math>\pi_i(S^2) \cong \pi_i(S^3) \oplus \pi_{i - 1}(S^1).</math>

The homotopy groups <math>\pi_{i - 1}(S^1)</math> are trivial for <math>i \geq 3,</math> so there exist isomorphisms between <math>\pi_i(S^2)</math> and <math>\pi_i(S^3)</math> for <math>i \geq 3.</math>

Analog the fibers <math>S^3</math> in <math>S^7</math> and <math>S^7</math> in <math>S^{15}</math> are contractible to a point. Further the short exact sequences split and there are families of isomorphisms:Шаблон:R

<math>\pi_i(S^4) \cong \pi_i(S^7) \oplus \pi_{i - 1}(S^3)</math> and <math>\pi_i(S^8) \cong \pi_i(S^{15}) \oplus \pi_{i - 1}(S^7).</math>

Spectral sequence

Spectral sequences are important tools in algebraic topology for computing (co-)homology groups.

The Leray-Serre spectral sequence connects the (co-)homology of the total space and the fiber with the (co-)homology of the base space of a fibration. For a fibration <math>p \colon E \to B</math> with fiber <math>F,</math> where the base space is a path connected CW-complex, and an additive homology theory <math>G_*</math> there exists a spectral sequence:Шаблон:R

<math>H_k (B; G_q(F)) \cong E^2_{k, q} \implies G_{k + q}(E).</math>

Fibrations do not yield long exact sequences in homology, as they do in homotopy. But under certain conditions, fibrations provide exact sequences in homology. For a fibration <math>p \colon E \to B</math> with fiber <math>F,</math> where base space and fiber are path connected, the fundamental group <math>\pi_1(B)</math> acts trivially on <math>H_*(F)</math> and in addition the conditions <math>H_p(B) = 0</math> for <math>0<p<m</math> and <math>H_q(F) = 0</math> for <math>0<q<n</math> hold, an exact sequence exists (also known under the name Serre exact sequence):

<math>H_{m+n-1}(F) \xrightarrow {i_*} H_{m+n-1}(E) \xrightarrow {f_*} H_{m+n-1} (B) \xrightarrow \tau H_{m+n-2} (F) \xrightarrow {i^*} \cdots \xrightarrow {f_*} H_1 (B) \to 0.</math>Шаблон:R

This sequence can be used, for example, to prove Hurewicz's theorem or to compute the homology of loopspaces of the form <math>\Omega S^n:</math> Шаблон:R

<math>H_k (\Omega S^n) = \begin{cases} \Z & \exist q \in \Z \colon k = q (n-1)\\ 0 & \text{otherwise} \end{cases}.</math>

For the special case of a fibration <math>p \colon E \to S^n</math> where the base space is a <math>n</math>-sphere with fiber <math>F,</math> there exist exact sequences (also called Wang sequences) for homology and cohomology:Шаблон:R

<math>\cdots \to H_q(F) \xrightarrow{i_*} H_q(E) \to H_{q-n}(F) \to H_{q-1}(F) \to \cdots</math> <math>\cdots \to H^q(E) \xrightarrow{i^*} H^q(F) \to H^{q-n+1}(F) \to H^{q+1}(E) \to \cdots</math>

Orientability

For a fibration <math>p \colon E \to B</math> with fiber <math>F</math> and a fixed commuative ring <math>R</math> with a unit, there exists a contravariant functor from the fundamental groupoid of <math>B</math> to the category of graded <math>R</math>-modules, which assigns to <math>b \in B</math> the module <math>H_*(F_b, R)</math> and to the path class <math>[\omega]</math> the homomorphism <math>h[\omega]_* \colon H_*(F_{\omega (0)}, R) \to H_*(F_{\omega (1)}, R),</math> where <math>h[\omega]</math> is a homotopy class in <math>[F_{\omega(0)}, F_{\omega (1)}].</math>

A fibration is called orientable over <math>R</math> if for any closed path <math>\omega</math> in <math>B</math> the following holds: <math>h[\omega]_* = 1.</math>Шаблон:R

Euler characteristic

For an orientable fibration <math>p \colon E \to B</math> over the field <math>\mathbb{K}</math> with fiber <math>F</math> and path connected base space, the Euler characteristic of the total space is given by:

<math>\chi(E) = \chi(B)\chi(F).</math>

Here the Euler characteristics of the base space and the fiber are defined over the field <math>\mathbb{K}</math>.Шаблон:R

See also

References

Шаблон:Reflist