Английская Википедия:Filon quadrature

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In numerical analysis, Filon quadrature or Filon's method is a technique for numerical integration of oscillatory integrals. It is named after English mathematician Louis Napoleon George Filon, who first described the method in 1934.[1]

Description

The method is applied to oscillatory definite integrals in the form:

<math>\int_a^b f(x) g(x) dx</math>

where <math display="inline">f(x)</math> is a relatively slowly-varying function and <math display="inline">g(x)</math> is either sine or cosine or a complex exponential that causes the rapid oscillation of the integrand, particularly for high frequencies. In Filon quadrature, the <math display="inline">f(x)</math> is divided into <math display="inline">2N</math> subintervals of length <math display="inline">h</math>, which are then interpolated by parabolas. Since each subinterval is now converted into a Fourier integral of quadratic polynomials, these can be evaluated in closed-form by integration by parts. For the case of <math display="inline">g(x)=cos(kx)</math>, the integration formula is given as:[1][2]

<math>\int_a^b f(x) cos(kx) dx \approx h ( \alpha \left[ f(b)sin(kb)-f(a)sin(ka)\right] + \beta C_{2n} + \gamma C_{2n-1} )</math>

where

<math>\alpha=\left(\theta^2 + \theta sin(\theta)cos(\theta)-2sin^2(\theta)\right)/\theta^3</math>
<math>\beta=2\left[\theta (1+cos^2(\theta)) - 2sin(\theta)cos(\theta) \right]/\theta^3</math>
<math>\gamma=4(sin(\theta)-\theta cos(\theta))/\theta^3</math>
<math>C_{2n}=\frac{1}{2}f(a)cos(ka) + f(a+2h)cos(k(a+2h)) + f(a+4h)cos(k(a+4h)) + \ldots + \frac{1}{2}f(b)cos(kb)</math>
<math>C_{2n-1}=f(a+h)cos(k(a+h)) + f(a+3h)cos(k(a+3h)) + \ldots + f(b-h)cos(k(b-h))</math>
<math>\theta=kh</math>

Explicit Filon integration formulas for sine and complex exponential functions can be derived similarly.[2] The formulas above fail for small <math display="inline">\theta</math> values due to catastrophic cancellation;[3] Taylor series approximations must be in such cases to mitigate numerical errors, with <math display="inline">\theta=1/6</math> being recommended as a possible switchover point for 44-bit mantissa.[2]

Modifications, extensions and generalizations of Filon quadrature have been reported in numerical analysis and applied mathematics literature; these are known as Filon-type integration methods.[4][5] These include Filon-trapezoidal[2] and Filon–Clenshaw–Curtis methods.[6]

Applications

Filon quadrature is widely used in physics and engineering for robust computation of Fourier-type integrals. Applications include evaluation of oscillatory Sommerfeld integrals for electromagnetic and seismic problems in layered media[7][8][9] and numerical solution to steady incompressible flow problems in fluid mechanics,[10] as well as various different problems in neutron scattering,[11] quantum mechanics[12] and metallurgy.[13]

See also

References

Шаблон:Reflist Шаблон:Numerical integration

  1. 1,0 1,1 Ошибка цитирования Неверный тег <ref>; для сносок filon-1930 не указан текст
  2. 2,0 2,1 2,2 2,3 Ошибка цитирования Неверный тег <ref>; для сносок davis-rabinowitz-1984 не указан текст
  3. Ошибка цитирования Неверный тег <ref>; для сносок chase-fosdick-1969 не указан текст
  4. Ошибка цитирования Неверный тег <ref>; для сносок iserles-norsett-2004 не указан текст
  5. Ошибка цитирования Неверный тег <ref>; для сносок xiang-2007 не указан текст
  6. Ошибка цитирования Неверный тег <ref>; для сносок dominguez-2011 не указан текст
  7. Ошибка цитирования Неверный тег <ref>; для сносок cerveny-ravi-1971 не указан текст
  8. Ошибка цитирования Неверный тег <ref>; для сносок mosig-gardiol-1983 не указан текст
  9. Ошибка цитирования Неверный тег <ref>; для сносок chew-1990 не указан текст
  10. Ошибка цитирования Неверный тег <ref>; для сносок dennis-chang-1970 не указан текст
  11. Ошибка цитирования Неверный тег <ref>; для сносок grimley-1990 не указан текст
  12. Ошибка цитирования Неверный тег <ref>; для сносок fedotov-2023 не указан текст
  13. Ошибка цитирования Неверный тег <ref>; для сносок thouless-1987 не указан текст