Английская Википедия:Filon quadrature
In numerical analysis, Filon quadrature or Filon's method is a technique for numerical integration of oscillatory integrals. It is named after English mathematician Louis Napoleon George Filon, who first described the method in 1934.[1]
Description
The method is applied to oscillatory definite integrals in the form:
- <math>\int_a^b f(x) g(x) dx</math>
where <math display="inline">f(x)</math> is a relatively slowly-varying function and <math display="inline">g(x)</math> is either sine or cosine or a complex exponential that causes the rapid oscillation of the integrand, particularly for high frequencies. In Filon quadrature, the <math display="inline">f(x)</math> is divided into <math display="inline">2N</math> subintervals of length <math display="inline">h</math>, which are then interpolated by parabolas. Since each subinterval is now converted into a Fourier integral of quadratic polynomials, these can be evaluated in closed-form by integration by parts. For the case of <math display="inline">g(x)=cos(kx)</math>, the integration formula is given as:[1][2]
- <math>\int_a^b f(x) cos(kx) dx \approx h ( \alpha \left[ f(b)sin(kb)-f(a)sin(ka)\right] + \beta C_{2n} + \gamma C_{2n-1} )</math>
where
- <math>\alpha=\left(\theta^2 + \theta sin(\theta)cos(\theta)-2sin^2(\theta)\right)/\theta^3</math>
- <math>\beta=2\left[\theta (1+cos^2(\theta)) - 2sin(\theta)cos(\theta) \right]/\theta^3</math>
- <math>\gamma=4(sin(\theta)-\theta cos(\theta))/\theta^3</math>
- <math>C_{2n}=\frac{1}{2}f(a)cos(ka) + f(a+2h)cos(k(a+2h)) + f(a+4h)cos(k(a+4h)) + \ldots + \frac{1}{2}f(b)cos(kb)</math>
- <math>C_{2n-1}=f(a+h)cos(k(a+h)) + f(a+3h)cos(k(a+3h)) + \ldots + f(b-h)cos(k(b-h))</math>
- <math>\theta=kh</math>
Explicit Filon integration formulas for sine and complex exponential functions can be derived similarly.[2] The formulas above fail for small <math display="inline">\theta</math> values due to catastrophic cancellation;[3] Taylor series approximations must be in such cases to mitigate numerical errors, with <math display="inline">\theta=1/6</math> being recommended as a possible switchover point for 44-bit mantissa.[2]
Modifications, extensions and generalizations of Filon quadrature have been reported in numerical analysis and applied mathematics literature; these are known as Filon-type integration methods.[4][5] These include Filon-trapezoidal[2] and Filon–Clenshaw–Curtis methods.[6]
Applications
Filon quadrature is widely used in physics and engineering for robust computation of Fourier-type integrals. Applications include evaluation of oscillatory Sommerfeld integrals for electromagnetic and seismic problems in layered media[7][8][9] and numerical solution to steady incompressible flow problems in fluid mechanics,[10] as well as various different problems in neutron scattering,[11] quantum mechanics[12] and metallurgy.[13]
See also
References
Шаблон:Reflist Шаблон:Numerical integration
- ↑ 1,0 1,1 Ошибка цитирования Неверный тег
<ref>
; для сносокfilon-1930
не указан текст - ↑ 2,0 2,1 2,2 2,3 Ошибка цитирования Неверный тег
<ref>
; для сносокdavis-rabinowitz-1984
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокchase-fosdick-1969
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокiserles-norsett-2004
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокxiang-2007
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокdominguez-2011
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокcerveny-ravi-1971
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокmosig-gardiol-1983
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокchew-1990
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокdennis-chang-1970
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокgrimley-1990
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокfedotov-2023
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокthouless-1987
не указан текст