Английская Википедия:First fundamental form

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of Шаблон:Math. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space. The first fundamental form is denoted by the Roman numeral Шаблон:Math, <math display="block">\mathrm{I}(x,y)= \langle x,y \rangle.</math>

Definition

Let Шаблон:Math be a parametric surface. Then the inner product of two tangent vectors is <math display="block"> \begin{align} & {} \quad \mathrm{I}(aX_u+bX_v,cX_u+dX_v) \\ & = ac \langle X_u,X_u \rangle + (ad+bc) \langle X_u,X_v \rangle + bd \langle X_v,X_v \rangle \\ & = Eac + F(ad+bc) + Gbd, \end{align} </math> where Шаблон:Mvar, Шаблон:Mvar, and Шаблон:Mvar are the coefficients of the first fundamental form.

The first fundamental form may be represented as a symmetric matrix.

<math display="block">\mathrm{I}(x,y) = x^\mathsf{T} \begin{bmatrix} E & F \\ F & G \end{bmatrix}y </math>

Further notation

When the first fundamental form is written with only one argument, it denotes the inner product of that vector with itself. <math display="block">\mathrm{I}(v)= \langle v,v \rangle = |v|^2</math>

The first fundamental form is often written in the modern notation of the metric tensor. The coefficients may then be written as Шаблон:Mvar: <math display="block"> \left(g_{ij}\right) = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} =\begin{pmatrix} E & F \\ F & G \end{pmatrix}</math>

The components of this tensor are calculated as the scalar product of tangent vectors Шаблон:Math and Шаблон:Math: <math display="block">g_{ij} = \langle X_i, X_j \rangle </math> for Шаблон:Math. See example below.

Calculating lengths and areas

The first fundamental form completely describes the metric properties of a surface. Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element Шаблон:Math may be expressed in terms of the coefficients of the first fundamental form as <math display="block">ds^2 = E\,du^2+2F\,du\,dv+G\,dv^2 \,.</math>

The classical area element given by Шаблон:Math can be expressed in terms of the first fundamental form with the assistance of Lagrange's identity, <math display="block">dA = |X_u \times X_v| \ du\, dv= \sqrt{ \langle X_u,X_u \rangle \langle X_v,X_v \rangle - \left\langle X_u,X_v \right\rangle^2 } \, du\, dv = \sqrt{EG-F^2} \, du\, dv.</math>

Example: curve on a sphere

A spherical curve on the unit sphere in Шаблон:Math may be parametrized as <math display="block">X(u,v) = \begin{bmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{bmatrix},\ (u,v) \in [0,2\pi) \times [0,\pi].</math>

Differentiating Шаблон:Math with respect to Шаблон:Mvar and Шаблон:Mvar yields <math display="block">\begin{align} X_u &= \begin{bmatrix} -\sin u \sin v \\ \cos u \sin v \\ 0 \end{bmatrix},\\ X_v &= \begin{bmatrix} \cos u \cos v \\ \sin u \cos v \\ -\sin v \end{bmatrix}. \end{align}</math>

The coefficients of the first fundamental form may be found by taking the dot product of the partial derivatives.

<math display="block">\begin{align} E &= X_u \cdot X_u = \sin^2 v \\ F &= X_u \cdot X_v = 0 \\ G &= X_v \cdot X_v = 1 \end{align}</math>

so: <math display="block"> \begin{bmatrix}E & F \\F & G\end{bmatrix} =\begin{bmatrix} \sin^2 v & 0 \\0 & 1\end{bmatrix}.</math>

Length of a curve on the sphere

The equator of the unit sphere is a parametrized curve given by <math display="block">(u(t),v(t))=(t,\tfrac{\pi}{2})</math> with Шаблон:Mvar ranging from 0 to 2Шаблон:Pi. The line element may be used to calculate the length of this curve.

<math display="block">\int_0^{2\pi} \sqrt{ E\left(\frac{du}{dt}\right)^2 + 2F \frac{du}{dt} \frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2 } \,dt = \int_0^{2\pi} \left|\sin v\right| dt = 2\pi \sin \tfrac{\pi}{2} = 2\pi</math>

Area of a region on the sphere

The area element may be used to calculate the area of the unit sphere.

<math display="block">\int_0^{\pi} \int_0^{2\pi} \sqrt{ EG-F^2 } \ du\, dv = \int_0^{\pi} \int_0^{2\pi} \sin v \, du\, dv = 2\pi \left[-\cos v\right]_0^{\pi} = 4\pi</math>

Gaussian curvature

The Gaussian curvature of a surface is given by <math display="block"> K = \frac{\det \mathrm{I\!I}_p}{\det \mathrm{I}_p} = \frac{ LN-M^2}{EG-F^2 }, </math> where Шаблон:Mvar, Шаблон:Mvar, and Шаблон:Mvar are the coefficients of the second fundamental form.

Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that Шаблон:Mvar is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.

See also

External links

Шаблон:Curvature