Английская Википедия:Flower snark

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox graph

Шаблон:Infobox graph

In the mathematical field of graph theory, the flower snarks form an infinite family of snarks introduced by Rufus Isaacs in 1975.[1]

As snarks, the flower snarks are connected, bridgeless cubic graphs with chromatic index equal to 4. The flower snarks are non-planar and non-hamiltonian. The flower snarks J5 and J7 have book thickness 3 and queue number 2.[2]

Construction

The flower snark Jn can be constructed with the following process :

  • Build n copies of the star graph on 4 vertices. Denote the central vertex of each star Ai and the outer vertices Bi, Ci and Di. This results in a disconnected graph on 4n vertices with 3n edges (Ai – Bi, Ai – Ci and Ai – Di for 1 ≤ in).
  • Construct the n-cycle (B1... Bn). This adds n edges.
  • Finally construct the 2n-cycle (C1... CnD1... Dn). This adds 2n edges.

By construction, the Flower snark Jn is a cubic graph with 4n vertices and 6n edges. For it to have the required properties, n should be odd.

Special cases

The name flower snark is sometimes used for J5, a flower snark with 20 vertices and 30 edges.[3] It is one of 6 snarks on 20 vertices Шаблон:OEIS. The flower snark J5 is hypohamiltonian.[4]

J3 is a trivial variation of the Petersen graph formed by replacing one of its vertices by a triangle. This graph is also known as the Tietze's graph.[5] In order to avoid trivial cases, snarks are generally restricted to have girth at least 5. With that restriction, J3 is not a snark.

Gallery

References

Шаблон:Reflist

  1. Шаблон:Cite journal
  2. Wolz, Jessica; Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
  3. Шаблон:MathWorld
  4. Шаблон:MathWorld
  5. Шаблон:Citation.