Английская Википедия:Foehn wind

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Redirect

Файл:Foehn effect mechanisms.png
The causes of the Foehn effect in the lee of mountains. Adapted from:[1]
Файл:Cumbre Nueva 2014-05.JPG
Dissolving Föhn clouds over Cumbre Nueva (1400 m), La Palma

A Foehn or Föhn (Шаблон:IPAc-en, Шаблон:IPAc-en,[2][3] Шаблон:IPAc-en[4][5]), is a type of dry, relatively warm, downslope wind that occurs in the lee (downwind side) of a mountain range. It is a rain shadow wind that results from the subsequent adiabatic warming of air that has dropped most of its moisture on windward slopes (see orographic lift). As a consequence of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than equivalent elevations on the windward slopes.

Foehn winds can raise temperatures by as much as 14 °C (25 °F)[6] in just a matter of hours. Switzerland, southern Germany and Austria have a warmer climate due to the Foehn, as moist winds off the Mediterranean Sea blow over the Alps.

Etymology

The name Foehn (Шаблон:Lang-de, Шаблон:IPA-de) arose in the Alpine region. Originating from Latin Шаблон:Lang, a mild west wind of which Favonius was the Roman personification[7] and probably transmitted by Шаблон:Lang-rm or just Шаблон:Lang, the term was adopted as Шаблон:Lang-goh. In the Southern Alps, the phenomenon is known as Шаблон:Lang but also Шаблон:Lang-it and Шаблон:Lang in Serbo-Croatian and Slovene. The German word Шаблон:Lang (pronounced the same way) also means 'hairdryer', while the word Шаблон:Lang is a genericized trademark today owned by AEG.[8] The form phon is used in French-speaking parts of Switzerland as well as in Italy.

The name Шаблон:Lang was originally used to refer to the south wind which blows during the winter months and brings thaw conditions to the northern side of the Alps. Because Föhn later became a generic term that was extended to other mountain ranges around the world that experience similar phenomena, the name "Alpine föhn" (Шаблон:Lang) was coined for the Föhns of the Alpine region.[9]

Causes

Файл:Val cenis stausee.jpg
The warm moist air from northern Italy is blocked on the windward side, loses much of its water vapour content, and descends on the French plateau and valley of the Mont-Cenis range in the Maurienne valley.

There are four known causes of the Foehn warming and drying effect.[1] These mechanisms often act together, with their contributions varying depending on the size and shape of the mountain barrier and on the meteorological conditions, such as the upstream wind speed, temperature and humidity.

Condensation and precipitation

When winds blow over elevated terrain, air forced upwards expands and cools due to the decrease in pressure with height. Since colder air can hold less water vapour, moisture condenses to form clouds and precipitates as rain or snow on the mountain's upwind slopes. The change of state from vapour to liquid water releases latent heat energy which heats the air, partially countering the cooling that occurs as the air rises. The subsequent removal of moisture as precipitation renders this heat gain by the air irreversible, leading to the warm, dry, Foehn conditions as the air descends in the mountain's lee. This mechanism has become a popular textbook example of atmospheric thermodynamics. However, the common occurrence of 'dry' Foehn events, where there is no precipitation, implies there must be other mechanisms.

Файл:Foehn rotor cloud.jpg
Rotor cloud revealing overturning and turbulence above the lee slopes of the Antarctic Peninsula during a westerly Foehn event

Isentropic draw-down

Isentropic draw-down is the draw-down of warmer, drier air from aloft. When the approaching winds are insufficiently strong to propel the low-level air up and over the mountain barrier, the airflow is said to be 'blocked' by the mountain and only air higher up near mountain-top level is able to pass over and down the lee slopes as Foehn winds. These higher source regions provide Foehn air that becomes warmer and drier on the leeside after it is compressed with descent due to the increase in pressure towards the surface.

Mechanical mixing

When river water passes over rocks, turbulence is generated in the form of rapids, and white water reveals the turbulent mixing of the water with the air above. Similarly, as air passes over mountains, turbulence occurs and the atmosphere is mixed in the vertical. This mixing generally leads to a downward warming and upward moistening of the cross-mountain airflow, and consequently to warmer, drier Foehn winds in the valleys downwind.

Radiative warming

Dry Foehn conditions are responsible for the occurrence of rain shadows in the lee of mountains, where clear, sunny conditions prevail. This often leads to greater daytime radiative (solar) warming under Foehn conditions. This type of warming is particularly important in cold regions where snow or ice melt is a concern or where avalanches are a risk.

Effects

Шаблон:More citations needed section Winds of this type are also called "snow-eaters" for their ability to make snow and ice melt or sublimate rapidly. This is a result not only of the warmth of Foehn air, but also its low relative humidity. Accordingly, Foehn winds are known to contribute to the disintegration of ice shelves in the polar regions.[10]

Foehn winds are notorious among mountaineers in the Alps, especially those climbing the Eiger, for whom the winds add further difficulty in ascending an already difficult peak.

They are also associated with the rapid spread of wildfires, making some regions which experience these winds particularly fire-prone.

Purported physiological effects

Anecdotally, residents in areas of frequent Foehn winds have reported experiencing a variety of illnesses ranging from migraines to psychosis. The first clinical review of these effects was published by the Austrian physician Anton Czermak in the 19th century.[11] A study by the Ludwig-Maximilians-Universität München found that suicide and accidents increased by 10 percent during Foehn winds in Central Europe.Шаблон:Citation needed The causation of Föhnkrankheit (English: Foehn-sickness) is unproven. Labels for preparations of aspirin combined with caffeine, codeine and the like will sometimes include Föhnkrankheit amongst the indications.Шаблон:Citation needed[12] Evidence for effects from Chinook winds remain anecdotal, as it does for New Zealand's Nor'wester.[13]

In some regions, Foehn winds are associated with causing circulatory problems, headaches, or similar ailments.[14] Researchers have found, however, the Foehn wind's warm temperature to be beneficial to humans in most situations, and have theorised that the reported negative effects may be a result of secondary factors, such as changes in the electrical field or in the ion state of the atmosphere, the wind's relatively low humidity, or the generally unpleasant sensation of being in an environment with strong and gusty winds.[14]

Local examples

Шаблон:More citations needed section Regionally, these winds are known by many different names. These include:

in Africa
in the Americas
in Antarctica
in Asia
in Europe
Файл:Mittagskogel Foehnwolken 15032008 01.jpg
Foehn clouds upon the Karawanken mountain range, Carinthia, Austria
Файл:Cascada de nubes La Palma 20080606.jpg
Foehn clouds over La Palma, Spain
in Oceania

In popular culture

  • The Foehn was mentioned by Queen's lead guitarist Brian May while talking about the band's grim Munich recording studio experience in 1982.[22]
  • The foehn is attributed by the narrator of Jens Bjørneboe's 1966 novel Шаблон:Lang (Moment of Freedom) as the traditional cause of occasional unprovoked murders in a small Alpine town.[23]
  • "Foehn" is the last word in A Nest of Ninnies, a 1969 novel by John Ashbery and James Schuyler. Ashbery claimed that he and Schuyler chose this particular word because "people, if they bothered to, would have to open the dictionary to find out what the last word in the novel meant".[24]
  • Fønfjord, meaning "Foehn Fjord", was named by Arctic explorer Carl Ryder after the powerful Foehn wind gusts blowing during the first exploration of the fjord in August 1891.[25]

Gallery

See also

References

  • McKnight, TL & Hess, Darrel (2000). "Foehn/Chinook Winds". In Physical Geography: A Landscape Appreciation, p. 132. Upper Saddle River, NJ: Prentice Hall. Шаблон:ISBN.

Footnotes

Шаблон:Reflist

External links

Шаблон:Commons Шаблон:Wikisource1911Enc

Шаблон:Authority control

cs:Místní názvy větrů#Fén

  1. 1,0 1,1 Шаблон:Cite journal
  2. Шаблон:Cite EPD
  3. Шаблон:Cite LPD
  4. Шаблон:Cite DPCE
  5. Шаблон:Cite Merriam-Webster
  6. Шаблон:Cite web
  7. Concise Oxford Dictionary, 10th edition, Oxford University Press, entry föhn.
  8. Шаблон:Cite web
  9. Der Brockhaus. Wetter und Klima. Seite 101, Brockhaus, Leipzig/Mannheim, 2009, Шаблон:ISBN
  10. Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. See the documentary: Snow Eater (the English translation of Canadian First Nations word phonetically pronounced chinook). telefilm.ca Шаблон:Webarchive.
  13. Brook, K., "Grumpy nor'west winds," University of Canterbury, 2 December 2014. Retrieved 22 November 2023.
  14. 14,0 14,1 Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite web
  18. Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. Sharples, J.J. Mills, G.A., McRae, R.H.D., Weber, R.O. (2010) Elevated fire danger conditions associated with foehn-like winds in southeastern Australia. Journal of Applied Meteorology and Climatology.
  21. Relph, D. "The Canterbury nor'wester," New Zealand Geographic. Retrieved 17 February 2018.
  22. Шаблон:Cite web
  23. Шаблон:Cite book
  24. Шаблон:Cite magazine
  25. Шаблон:Cite web