Английская Википедия:Foster's theorem

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Expert-subject

Шаблон:About

In probability theory, Foster's theorem, named after Gordon Foster,[1] is used to draw conclusions about the positive recurrence of Markov chains with countable state spaces. It uses the fact that positive recurrent Markov chains exhibit a notion of "Lyapunov stability" in terms of returning to any state while starting from it within a finite time interval.

Theorem

Consider an irreducible discrete-time Markov chain on a countable state space <math>S</math> having a transition probability matrix <math>P</math> with elements <math>p_{ij}</math> for pairs <math>i</math>, <math>j</math> in <math>S</math>. Foster's theorem states that the Markov chain is positive recurrent if and only if there exists a Lyapunov function <math>V: S \to \mathbb{R}</math>, such that <math>V(i) \geq 0 \text{ } \forall \text{ } i \in S</math> and

  1. <math>\sum_{j \in S}p_{ij}V(j) < {\infty}</math> for <math>i \in F</math>
  2. <math>\sum_{j \in S}p_{ij}V(j) \leq V(i) - \varepsilon</math> for all <math> i \notin F</math>

for some finite set <math>F</math> and strictly positive <math>\varepsilon</math>.[2]

Related links

References

Шаблон:Reflist


Шаблон:Probability-stub