Английская Википедия:Fresnel integral

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Use American English Шаблон:Short description

Файл:Fresnel Integrals (Unnormalised).svg
Plots of Шаблон:Math and Шаблон:Math. The maximum of Шаблон:Math is about Шаблон:Val. If the integrands of Шаблон:Mvar and Шаблон:Mvar were defined using Шаблон:Math instead of Шаблон:Math, then the image would be scaled vertically and horizontally (see below).

The Fresnel integrals Шаблон:Math and Шаблон:Math are two transcendental functions named after Augustin-Jean Fresnel that are used in optics and are closely related to the error function (Шаблон:Math). They arise in the description of near-field Fresnel diffraction phenomena and are defined through the following integral representations: <math display="block">S(x) = \int_0^x \sin\left(t^2\right)\,dt, \quad C(x) = \int_0^x \cos\left(t^2\right)\,dt.</math>

The simultaneous parametric plot of Шаблон:Math and Шаблон:Math is the Euler spiral (also known as the Cornu spiral or clothoid).

Definition

Файл:Fresnel Integrals (Normalised).svg
Fresnel integrals with arguments Шаблон:Math instead of Шаблон:Math converge to Шаблон:Sfrac instead of Шаблон:Math.

The Fresnel integrals admit the following power series expansions that converge for all Шаблон:Mvar: <math display="block">\begin{align}

S(x) &= \int_0^x \sin\left(t^2\right)\,dt = \sum_{n=0}^{\infin}(-1)^n \frac{x^{4n+3}}{(2n+1)!(4n+3)}, \\
C(x) &= \int_0^x \cos\left(t^2\right)\,dt = \sum_{n=0}^{\infin}(-1)^n \frac{x^{4n+1}}{(2n)!(4n+1)}.

\end{align}</math>

Some widely used tablesШаблон:SfnШаблон:Sfn use Шаблон:Math instead of Шаблон:Math for the argument of the integrals defining Шаблон:Math and Шаблон:Math. This changes their limits at infinity from Шаблон:Math to Шаблон:SfracШаблон:Sfn and the arc length for the first spiral turn from Шаблон:Math to 2 (at Шаблон:Math). These alternative functions are usually known as normalized Fresnel integrals.

Euler spiral

Шаблон:Main

Файл:Cornu Spiral.svg
Euler spiral Шаблон:Math. The spiral converges to the centre of the holes in the image as Шаблон:Mvar tends to positive or negative infinity.
Файл:CornuSpiralAnimation.gif
Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle.

The Euler spiral, also known as Cornu spiral or clothoid, is the curve generated by a parametric plot of Шаблон:Math against Шаблон:Math. The Cornu spiral was created by Marie Alfred Cornu as a nomogram for diffraction computations in science and engineering.

From the definitions of Fresnel integrals, the infinitesimals Шаблон:Mvar and Шаблон:Mvar are thus: <math display="block">\begin{align} dx &= C'(t)\,dt = \cos\left(t^2\right)\,dt, \\ dy &= S'(t)\,dt = \sin\left(t^2\right)\,dt. \end{align}</math>

Thus the length of the spiral measured from the origin can be expressed as <math display="block">L = \int_0^{t_0} \sqrt {dx^2 + dy^2} = \int_0^{t_0} dt = t_0. </math>

That is, the parameter Шаблон:Mvar is the curve length measured from the origin Шаблон:Math, and the Euler spiral has infinite length. The vector Шаблон:Math also expresses the unit tangent vector along the spiral, giving Шаблон:Math. Since Шаблон:Mvar is the curve length, the curvature Шаблон:Mvar can be expressed as <math display="block"> \kappa = \frac{1}{R} = \frac{d\theta}{dt} = 2t. </math>

Thus the rate of change of curvature with respect to the curve length is <math display="block">\frac{d\kappa}{dt} = \frac {d^2\theta}{dt^2} = 2. </math>

An Euler spiral has the property that its curvature at any point is proportional to the distance along the spiral, measured from the origin. This property makes it useful as a transition curve in highway and railway engineering: if a vehicle follows the spiral at unit speed, the parameter Шаблон:Mvar in the above derivatives also represents the time. Consequently, a vehicle following the spiral at constant speed will have a constant rate of angular acceleration.

Sections from Euler spirals are commonly incorporated into the shape of rollercoaster loops to make what are known as clothoid loops.

Properties

Шаблон:Math and Шаблон:Math are odd functions of Шаблон:Mvar,

<math display=block>C(-x) = -C(x), \quad S(-x) = -S(x).</math>

Asymptotics of the Fresnel integrals as Шаблон:Math are given by the formulas:

<math display="block">\begin{align} S(x) & =\sqrt{\tfrac18\pi} \sgn x - \left[ 1 + O\left(x^{-4}\right) \right] \left( \frac{\cos\left(x^2\right)}{2x} + \frac{\sin\left(x^2\right)}{ 4x^3 } \right), \\[6px] C(x) & =\sqrt{\tfrac18\pi} \sgn x + \left[ 1 + O\left(x^{-4}\right) \right] \left( \frac{\sin\left(x^2\right)}{2x} - \frac{\cos\left(x^2\right)}{ 4x^3 } \right) . \end{align}</math>

Файл:Fresnel S with domain coloring.svg
Complex Fresnel integral Шаблон:Math

Using the power series expansions above, the Fresnel integrals can be extended to the domain of complex numbers, where they become entire functions of the complex variable Шаблон:Mvar.

The Fresnel integrals can be expressed using the error function as follows:[1]

Файл:Fresnel C with domain coloring.svg
Complex Fresnel integral Шаблон:Math

<math display="block">\begin{align} S(z) & =\sqrt{\frac{\pi}{2}} \cdot\frac{1+i}{4} \left[ \operatorname{erf}\left(\frac{1+i}{\sqrt{2}}z\right) -i \operatorname{erf}\left(\frac{1-i}{\sqrt{2}}z\right) \right], \\[6px] C(z) & =\sqrt{\frac{\pi}{2}} \cdot\frac{1-i}{4} \left[ \operatorname{erf}\left(\frac{1+i}{\sqrt{2}}z\right) + i \operatorname{erf}\left(\frac{1-i}{\sqrt{2}}z\right) \right]. \end{align}</math>

or

<math display="block">\begin{align} C(z) + i S(z) & = \sqrt{\frac{\pi}{2}}\cdot\frac{1+i}{2} \operatorname{erf}\left(\frac{1-i}{\sqrt{2}}z\right), \\[6px] S(z) + i C(z) & = \sqrt{\frac{\pi}{2}}\cdot\frac{1+i}{2} \operatorname{erf}\left(\frac{1+i}{\sqrt{2}}z\right). \end{align}</math>

Limits as Шаблон:Math approaches infinity

The integrals defining Шаблон:Math and Шаблон:Math cannot be evaluated in the closed form in terms of elementary functions, except in special cases. The limits of these functions as Шаблон:Mvar goes to infinity are known: <math display="block">\int_0^\infty \cos \left(t^2\right)\,dt = \int_0^\infty \sin \left(t^2\right) \, dt = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}} \approx 0.6267.</math>

Шаблон:Collapse top

Файл:Fresnel Integral Contour.svg
The sector contour used to calculate the limits of the Fresnel integrals

This can be derived with any one of several methods. One of them[2] uses a contour integral of the function <math display="block"> e^{-z^2}</math> around the boundary of the sector-shaped region in the complex plane formed by the positive Шаблон:Math-axis, the bisector of the first quadrant Шаблон:Math with Шаблон:Math, and a circular arc of radius Шаблон:Math centered at the origin.

As Шаблон:Math goes to infinity, the integral along the circular arc Шаблон:Math tends to Шаблон:Math <math display="block">\left|\int_{\gamma_2}e^{-z^2}\,dz\right| = \left|\int_0^\frac{\pi}{4}e^{-R^2(\cos t + i \sin t)^2}\,Re^{it}dt\right| \leq R\int_0^\frac{\pi}{4}e^{-R^2\cos2t}\,dt \leq R\int_0^\frac{\pi}{4}e^{-R^2\left(1-\frac{4}{\pi}t\right)}\,dt = \frac{\pi}{4R}\left(1-e^{-R^2}\right),</math> where polar coordinates Шаблон:Math were used and Jordan's inequality was utilised for the second inequality. The integral along the real axis Шаблон:Math tends to the half Gaussian integral <math display="block">\int_{\gamma_1} e^{-z^2} \, dz = \int_0^\infty e^{-t^2} \, dt = \frac{\sqrt{\pi}}{2}.</math>

Note too that because the integrand is an entire function on the complex plane, its integral along the whole contour is zero. Overall, we must have <math display="block">\int_{\gamma_3} e^{-z^2} \, dz = \int_{\gamma_1} e^{-z^2} \, dz = \int_0^\infty e^{-t^2} \, dt,</math> where Шаблон:Math denotes the bisector of the first quadrant, as in the diagram. To evaluate the left hand side, parametrize the bisector as <math display="block">z = te^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2}(1 + i)t</math> where Шаблон:Mvar ranges from 0 to Шаблон:Math. Note that the square of this expression is just Шаблон:Math. Therefore, substitution gives the left hand side as <math display="block">\int_0^\infty e^{-it^2}\frac{\sqrt{2}}{2}(1 + i) \, dt.</math>

Using Euler's formula to take real and imaginary parts of Шаблон:Math gives this as <math display="block">\begin{align} & \int_0^\infty \left(\cos\left(t^2\right) - i\sin\left(t^2\right)\right)\frac{\sqrt{2}}{2}(1 + i) \, dt \\[6px] &\quad = \frac{\sqrt{2}}{2} \int_0^\infty \left[\cos\left(t^2\right) + \sin\left(t^2\right) + i \left(\cos\left(t^2\right) - \sin\left(t^2\right)\right) \right] \, dt \\[6px] &\quad = \frac{\sqrt{\pi}}{2} + 0i, \end{align}</math> where we have written Шаблон:Math to emphasize that the original Gaussian integral's value is completely real with zero imaginary part. Letting <math display="block">I_C = \int_0^\infty \cos\left(t^2\right) \, dt, \quad I_S = \int_0^\infty \sin\left(t^2\right) \, dt</math> and then equating real and imaginary parts produces the following system of two equations in the two unknowns Шаблон:Math and Шаблон:Math: <math display="block">\begin{align} I_C + I_S & = \sqrt{\frac{\pi}{2}}, \\ I_C - I_S & = 0. \end{align}</math>

Solving this for Шаблон:Math and Шаблон:Math gives the desired result. Шаблон:Collapse bottom

Generalization

The integral <math display="block">\int x^m e^{ix^n}\,dx = \int\sum_{l=0}^\infty\frac{i^lx^{m+nl}}{l!}\,dx

= \sum_{l=0}^\infty \frac{i^l}{(m+nl+1)}\frac{x^{m+nl+1}}{l!}</math>

is a confluent hypergeometric function and also an incomplete gamma functionШаблон:Sfn <math display="block">\begin{align} \int x^m e^{ix^n}\,dx & =\frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} \frac{m+1}{n}\\1+\frac{m+1}{n}\end{array}\mid ix^n\right) \\[6px] & =\frac{1}{n} i^\frac{m+1}{n}\gamma\left(\frac{m+1}{n},-ix^n\right), \end{align}</math> which reduces to Fresnel integrals if real or imaginary parts are taken: <math display="block">\int x^m\sin(x^n)\,dx = \frac{x^{m+n+1}}{m+n+1} \,_1F_2\left(\begin{array}{c}\frac{1}{2}+\frac{m+1}{2n}\\ \frac{3}{2}+\frac{m+1}{2n},\frac{3}{2}\end{array}\mid -\frac{x^{2n}}{4}\right).</math> The leading term in the asymptotic expansion is <math display="block"> _1F_1 \left(\begin{array}{c}\frac{m+1}{n}\\1+\frac{m+1}{n} \end{array}\mid ix^n\right)\sim \frac{m+1}{n}\,\Gamma\left(\frac{m+1}{n}\right) e^{i\pi\frac{m+1}{2n}} x^{-m-1},</math> and therefore <math display="block">\int_0^\infty x^m e^{ix^n}\,dx = \frac{1}{n} \,\Gamma\left(\frac{m+1}{n}\right)e^{i\pi\frac{m+1}{2n}}.</math>

For Шаблон:Math, the imaginary part of this equation in particular is <math display="block">\int_0^\infty\sin\left(x^a\right)\,dx = \Gamma\left(1+\frac{1}{a} \right) \sin\left(\frac{\pi}{2a}\right),</math> with the left-hand side converging for Шаблон:Math and the right-hand side being its analytical extension to the whole plane less where lie the poles of Шаблон:Math.

The Kummer transformation of the confluent hypergeometric function is <math display="block"> \int x^m e^{ix^n}\,dx = V_{n,m}(x)e^{ix^n},</math> with <math display="block">V_{n,m} := \frac{x^{m+1}}{m+1}\,_1F_1\left(\begin{array}{c} 1 \\ 1 + \frac{m+1}{n} \end{array}\mid -ix^n\right).</math>

Numerical approximation

For computation to arbitrary precision, the power series is suitable for small argument. For large argument, asymptotic expansions converge faster.Шаблон:Sfn Continued fraction methods may also be used.Шаблон:Sfn

For computation to particular target precision, other approximations have been developed. CodyШаблон:Sfn developed a set of efficient approximations based on rational functions that give relative errors down to Шаблон:Val. A FORTRAN implementation of the Cody approximation that includes the values of the coefficients needed for implementation in other languages was published by van Snyder.Шаблон:Sfn Boersma developed an approximation with error less than Шаблон:Val.Шаблон:Sfn

Applications

The Fresnel integrals were originally used in the calculation of the electromagnetic field intensity in an environment where light bends around opaque objects.Шаблон:Sfn More recently, they have been used in the design of highways and railways, specifically their curvature transition zones, see track transition curve.Шаблон:Sfn Other applications are rollercoastersШаблон:Sfn or calculating the transitions on a velodrome track to allow rapid entry to the bends and gradual exit.Шаблон:Citation needed

Gallery

See also

Шаблон:Portal Шаблон:Div col

Шаблон:Div col end

Notes

Шаблон:Reflist

References

Шаблон:Sfn whitelist

External links

Шаблон:Nonelementary Integral

  1. functions.wolfram.com, Fresnel integral S: Representations through equivalent functions and Fresnel integral C: Representations through equivalent functions. Note: Wolfram uses the Abramowitz & Stegun convention, which differs from the one in this article by factors of Шаблон:Math.
  2. Another method based on parametric integration is described for example in Шаблон:Harvnb.