Английская Википедия:Function space

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Functions In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set Шаблон:Var into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

In linear algebra

Шаблон:See also Шаблон:Unreferenced section

Let Шаблон:Var be a vector space over a field Шаблон:Var and let Шаблон:Var be any set. The functions Шаблон:VarШаблон:Var can be given the structure of a vector space over Шаблон:Var where the operations are defined pointwise, that is, for any Шаблон:Var, Шаблон:Var : Шаблон:VarШаблон:Var, any Шаблон:Var in Шаблон:Var, and any Шаблон:Var in Шаблон:Var, define <math display="block"> \begin{align}

 (f+g)(x) &= f(x)+g(x) \\
 (c\cdot f)(x) &= c\cdot f(x)

\end{align} </math> When the domain Шаблон:Var has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure. For example, if Шаблон:Var is also a vector space over Шаблон:Var, the set of linear maps Шаблон:VarШаблон:Var form a vector space over Шаблон:Var with pointwise operations (often denoted Hom(Шаблон:Var,Шаблон:Var)). One such space is the dual space of Шаблон:Var: the set of linear functionals Шаблон:VarШаблон:Var with addition and scalar multiplication defined pointwise.

Examples

Function spaces appear in various areas of mathematics:

Functional analysis

Functional analysis is organized around adequate techniques to bring function spaces as topological vector spaces within reach of the ideas that would apply to normed spaces of finite dimension. Here we use the real line as an example domain, but the spaces below exist on suitable open subsets <math>\Omega \subseteq \R^n</math>

Norm

If Шаблон:Math is an element of the function space <math> \mathcal {C}(a,b) </math> of all continuous functions that are defined on a closed interval Шаблон:Closed-closed, the norm <math>\|y\|_\infty</math> defined on <math> \mathcal {C}(a,b) </math> is the maximum absolute value of Шаблон:Math for Шаблон:Math,[2] <math display="block"> \| y \|_\infty \equiv \max_{a \le x \le b} |y(x)| \qquad \text{where} \ \ y \in \mathcal {C}(a,b) </math>

is called the uniform norm or supremum norm ('sup norm').

Bibliography

  • Kolmogorov, A. N., & Fomin, S. V. (1967). Elements of the theory of functions and functional analysis. Courier Dover Publications.
  • Stein, Elias; Shakarchi, R. (2011). Functional Analysis: An Introduction to Further Topics in Analysis. Princeton University Press.

See also

References

Шаблон:Reflist

Шаблон:Authority control

Шаблон:Lp spaces Шаблон:Measure theory