Английская Википедия:Fundamental pair of periods

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short descriptionIn mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined.

Файл:Fundamental parallelogram.png
Fundamental parallelogram defined by a pair of vectors in the complex plane.

Definition

A fundamental pair of periods is a pair of complex numbers <math>\omega_1,\omega_2 \in \Complex</math> such that their ratio <math>\omega_2 / \omega_1</math> is not real. If considered as vectors in <math>\R^2</math>, the two are not collinear. The lattice generated by <math>\omega_1</math> and <math>\omega_2</math> is

<math>\Lambda = \left\{ m\omega_1 + n\omega_2 \mid m,n\in\Z \right\}.</math>

This lattice is also sometimes denoted as <math>\Lambda(\omega_1, \omega_2)</math> to make clear that it depends on <math>\omega_1</math> and <math>\omega_2.</math> It is also sometimes denoted by <math>\Omega\vphantom{(}</math> or <math>\Omega(\omega_1, \omega_2),</math> or simply by <math>(\omega_1, \omega_2).</math> The two generators <math>\omega_1</math> and <math>\omega_2</math> are called the lattice basis. The parallelogram with vertices <math>(0, \omega_1, \omega_1+\omega_2, \omega_2)</math> is called the fundamental parallelogram.

While a fundamental pair generates a lattice, a lattice does not have any unique fundamental pair; in fact, an infinite number of fundamental pairs correspond to the same lattice.

Algebraic properties

A number of properties, listed below, can be seen.

Equivalence

Файл:A lattice spanned by periods.svg
A lattice spanned by periods Шаблон:Math and Шаблон:Math, showing an equivalent pair of periods Шаблон:Math and Шаблон:Math.

Two pairs of complex numbers <math>(\omega_1, \omega_2)</math> and <math>(\alpha_1, \alpha_2)</math> are called equivalent if they generate the same lattice: that is, if <math>\Lambda(\omega_1, \omega_2) = \Lambda(\alpha_1, \alpha_2).</math>

No interior points

The fundamental parallelogram contains no further lattice points in its interior or boundary. Conversely, any pair of lattice points with this property constitute a fundamental pair, and furthermore, they generate the same lattice.

Modular symmetry

Two pairs <math>(\omega_1,\omega_2)</math> and <math>(\alpha_1,\alpha_2)</math> are equivalent if and only if there exists a Шаблон:Math matrix <math display=inline>\begin{pmatrix} a & b \\ c & d \end{pmatrix}</math> with integer entries <math>a,</math> <math>b,</math> <math>c,</math> and <math>d</math> and determinant <math>ad - bc = \pm 1</math> such that

<math>\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} =
\begin{pmatrix} a & b \\ c & d \end{pmatrix}

\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix},</math>

that is, so that

<math>\begin{align}

\alpha_1 = a\omega_1+b\omega_2, \\[5mu] \alpha_2 = c\omega_1+d\omega_2. \end{align}</math>

This matrix belongs to the modular group <math>\mathrm{SL}(2,\Z).</math> This equivalence of lattices can be thought of as underlying many of the properties of elliptic functions (especially the Weierstrass elliptic function) and modular forms.

Topological properties

The abelian group <math>\Z^2</math> maps the complex plane into the fundamental parallelogram. That is, every point <math>z \in \Complex</math> can be written as <math>z = p+m\omega_1+n\omega_2</math> for integers <math>m,n</math> with a point <math>p</math> in the fundamental parallelogram.

Since this mapping identifies opposite sides of the parallelogram as being the same, the fundamental parallelogram has the topology of a torus. Equivalently, one says that the quotient manifold <math>\C/\Lambda</math> is a torus.

Fundamental region

Файл:ModularGroup-FundamentalDomain.svg
The grey depicts the canonical fundamental domain.

Define <math>\tau = \omega_2/\omega_1</math> to be the half-period ratio. Then the lattice basis can always be chosen so that <math>\tau</math> lies in a special region, called the fundamental domain. Alternately, there always exists an element of the projective special linear group <math>\operatorname{PSL}(2,\Z)</math> that maps a lattice basis to another basis so that <math>\tau</math> lies in the fundamental domain.

The fundamental domain is given by the set <math>D,</math> which is composed of a set <math>U</math> plus a part of the boundary of <math>U</math>:

<math>U = \left\{ z \in H: \left| z \right| > 1, \, \left| \operatorname{Re}(z) \right| < \tfrac{1}{2} \right\}.</math>

where <math>H</math> is the upper half-plane.

The fundamental domain <math>D</math> is then built by adding the boundary on the left plus half the arc on the bottom:

<math>D = U \cup \left\{ z \in H: \left| z \right| \geq 1,\, \operatorname{Re}(z) = -\tfrac{1}{2} \right\} \cup \left\{ z \in H: \left| z \right| = 1,\, \operatorname{Re}(z) \le 0 \right\}.</math>

Three cases pertain:

  • If <math>\tau \ne i</math> and <math display=inline>\tau \ne e^{i\pi/3}</math>, then there are exactly two lattice bases with the same <math>\tau</math> in the fundamental region: <math>(\omega_1,\omega_2)</math> and <math>(-\omega_1,-\omega_2).</math>
  • If <math>\tau=i</math>, then four lattice bases have the same <math>\tau</math>: the above two <math>(\omega_1,\omega_2)</math>, <math>(-\omega_1,-\omega_2)</math> and <math>(i\omega_1,i\omega_2)</math>, <math>(-i\omega_1,-i\omega_2).</math>
  • If <math display=inline>\tau=e^{i\pi/3}</math>, then there are six lattice bases with the same <math>\tau</math>: <math>(\omega_1,\omega_2)</math>, <math>(\tau \omega_1, \tau \omega_2)</math>, <math>(\tau^2 \omega_1, \tau^2 \omega_2)</math> and their negatives.

In the closure of the fundamental domain: <math>\tau=i</math> and <math display=inline>\tau=e^{i\pi/3}.</math>

See also

References

  • Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory (1990), Springer-Verlag, New York. Шаблон:ISBN (See chapters 1 and 2.)
  • Jurgen Jost, Compact Riemann Surfaces (2002), Springer-Verlag, New York. Шаблон:ISBN (See chapter 2.)

Шаблон:Algebraic curves navbox