Английская Википедия:Gallium(III) oxide

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Chembox

Gallium(III) oxide is an inorganic compound and ultra-wide-bandgap semiconductor with the formula Ga2O3. It is actively studied for applications in power electronics, phosphors, and gas sensing.[1][2][3] The compound has several polymorphs, of which the monoclinic β-phase is the most stable. The β-phase’s bandgap of 4.7–4.9 eV and large-area, native substrates make it a promising competitor to GaN and SiC-based power electronics applications and solar-blind UV photodetectors.[3][4] The orthorhombic ĸ-Ga2O3 is the second most stable polymorph. The ĸ-phase has shown instability of subsurface doping density under thermal exposure.[5] Ga2O3 exhibits reduced thermal conductivity and electron mobility by an order of magnitude compared to GaN and SiC, but is predicted to be significantly more cost-effective due to being the only wide-bandgap material capable of being grown from melt.[3][6][7] β-Ga2O3 is thought to be radiation-hard, which makes it promising for military and space applications.[8][9]

Preparation

Gallium trioxide is precipitated in hydrated form upon neutralization of acidic or basic solution of gallium salt. Also, it is formed on heating gallium in air or by thermally decomposing gallium nitrate at 200–250 °C.

Crystalline Ga2O3 can occur in five polymorphs, α, β, γ, δ, and ε. Of these polymorphs β-Ga2O3 is the most thermodynamically stable phase at standard temperature and pressure[10] while α-Ga2O3 is the most stable polymorph under high pressures.[11]

Bulk substrates of β-Ga2O3 can be produced, which is one of the major advantages of this material system. Bulk substrates can be produced in multiple orientations and by multiple techniques.[17][18]

Файл:Czorchralski Gallium.png
Diagram of how gallium oxide is grown by the Czochralski method
  • α-Ga2O3 can be obtained by heating β-Ga2O3 at 65 kbar and 1100 °C. It has a corundum structure. The hydrated form can be prepared by decomposing precipitated and "aged" gallium hydroxide at 500 °C. Epitaxial thin films of α-Ga2O3 deposited on c-plane (0001), m-plane (10Шаблон:Overline0), or a-plane (11Шаблон:Overline0) sapphire substrates have been demonstrated.
  • γ-Ga2O3 is prepared by rapidly heating the hydroxide gel at 400–500 °C. A more crystalline form of this polymorph can be prepared directly from gallium metal by a solvothermal synthesis.[19]
  • δ-Ga2O3 is obtained by heating Ga(NO3)3 at 250 °C.[20]
  • ε-Ga2O3 is prepared by heating δ-Ga2O3 at 550 °C.[10] Thin films of ε-Ga2O3 are deposited by means of metalorganic vapour-phase epitaxy using trimethylgallium and water on sapphire substrates at temperatures between 550 and 650 °C[21]

Reactions

Gallium(III) trioxide is amphoteric.[22] It reacts with alkali metal oxides at high temperature to form, e.g., NaGaO2, and with Mg, Zn, Co, Ni, Cu oxides to form spinels, e.g., MgGa2O4.[23] It dissolves in strong alkali to form a solution of the gallate ion, Шаблон:Chem.

With HCl, it forms gallium trichloride GaCl3.[24]

Ga2O3 + 6 HCl → 2 GaCl3 + 3 H2O

It can be reduced to gallium suboxide (gallium(I) oxide) Ga2O by H2.[25] or by reaction with gallium metal:[26]

Ga2O3 + 2 H2 → Ga2O + 2 H2O
Ga2O3 + 4 Ga → 3 Ga2O

Structure

β-Ga2O3, with a melting point of 1900 °C, is the most stable crystalline modification. The oxide ions are in a distorted cubic closest packing arrangement, and the gallium (III) ions occupy distorted tetrahedral and octahedral sites, with Ga–O bond distances of 1.83 and 2.00 Å respectively.[27]

α-Ga2O3 has the same structure (corundum) as α-Al2O3, wherein Ga ions are 6-coordinate.[28][29]

γ-Ga2O3 has a defect spinel structure similar to that of γ-Al2O3.[30]

ε-Ga2O3 films deposited by metalorganic vapour-phase epitaxy show a columnar structure with orthorhombic crystal symmetry. Macroscopically, this structure is seen by X-ray crystallography as hexagonal close packed.[31]

κ-Ga2O3 has an orthorhombic structure and forms with 120° twin domains, resulting in hexagonal symmetry which is often identified as ε-Ga2O3.[32]

Phase of Ga2O3 Figure Crystal structure name
α
Файл:Alpha-ga2o3-crystal structure.png
Crystal structure of α-Ga2O3[29]
Rhombohedral

(Corundum)

β
Файл:Kristallstruktur Galliumoxid.png
Crystal structure of β-Ga2O3
Monoclinic
γ
Файл:Gamma-ga2o3-crystal structure.png
Crystal structure of γ-Ga2O3[33]
Cubic defect spinel
δ
Файл:Delta-ga2o3-crystal structure.png
Crystal structure of δ-Ga2O3[34][35]
Body-centered cubic bixbyite
ε
Файл:Epsilon-ga2o3-crystal structure.png
Crystal structure of ε-Ga2O3[36]
Hexagonal
κ (subgroup of ε phase)[37]
Файл:Kappa-ga2o3-crystal structure.png
Crystal structure of κ-Ga2O3[38]
Orthorhombic

Applications

Gallium(III) oxide has been studied for usage as passive components in lasers,[39] phosphors,[1] and luminescent materials[40] as well as active components for gas sensors,[2] power diodes,[41] and power transistors.[42][43] Since the first publication in January 2012 by the National Institute of Information and Communications Technology, in collaboration with Tamura Co., Ltd. and Koha Co., Ltd. of the world's first single-crystal gallium oxide (Ga2O3) field-effect transistors, the predominant interest in gallium oxide is in the β-polymorph for power electronics.[44][3]

Monoclinic β-Ga2O3 has shown increasing performance since 2012 approaching state of the art GaN and SiC power devices.[3] β-Ga2O3 Schottky diodes have exceeded breakdown voltages of 2400 V.[41] β-Ga2O3/NiOx p–n diodes have exhibited breakdown voltages over 1200 V.[45] β-Ga2O3 MOSFETs have individually achieved figures of merits of  fT of 27 GHz,[42] fMAX of 48 GHz,[43] and 5.4 MV/cm average breakdown field.[43] This field exceeds that which is possible in SiC or GaN.

ε-Ga2O3 thin films deposited on sapphire show potential applications as solar-blind UV photodetector.[4]

References

Шаблон:Reflist

Шаблон:Gallium compounds Шаблон:Oxides Шаблон:Oxygen compounds

Шаблон:Use dmy dates

  1. 1,0 1,1 Шаблон:Cite journal
  2. 2,0 2,1 Шаблон:Cite journal
  3. 3,0 3,1 3,2 3,3 3,4 Шаблон:Cite journal
  4. 4,0 4,1 Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Шаблон:Cite book
  10. 10,0 10,1 Bailar, J; Emeléus, H; Nyholm, R; Trotman-Dickenson, A. F. (1973). Comprehensive Inorganic Chemistry. Vol. 1, p. 1091.
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite journal
  18. Шаблон:Cite web
  19. Шаблон:Cite journal
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Ebbing, Darrell D.; Gammon, Steven D. (2010) General Chemistry, 9th ed., Thomson Brooks/Cole. Шаблон:ISBN
  23. Downs, Anthony John (ed.) (1993) The Chemistry of Aluminium, Gallium, Indium and Thallium. Springer. Шаблон:ISBN
  24. Zuckerman, J J and Hagen, A P eds. (2009) Inorganic Reactions and Methods, the Formation of Bonds to Halogens (Part 2), Wiley-VCH Verlag GmbH, Шаблон:ISBN
  25. Шаблон:Cite journal
  26. Greenwood, N.N.; Emeleus, H. J. and Sharpe, A. G. (1963) "The chemistry of Gallium" in Advances in Inorganic Chemistry and Radiochemistry, Vol. 5, Elsevier, Academic Press
  27. King, R. B. (1994) Encyclopedia of Inorganic Chemistry. Vol. 3. p. 1256. Шаблон:ISBN.
  28. Шаблон:Cite journal
  29. 29,0 29,1 Шаблон:Cite journal
  30. Шаблон:Greenwood&Earnshaw
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. 41,0 41,1 Шаблон:Cite journal
  42. 42,0 42,1 Шаблон:Cite journal
  43. 43,0 43,1 43,2 Шаблон:Cite arXiv
  44. Шаблон:Cite journal
  45. Шаблон:Cite journal