Английская Википедия:Gamma scale

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Neutral third on C.png
Neutral third:
just 347.41 cents Шаблон:Audio,
ET 350 cents Шаблон:Audio,
Gamma scale 351 cents Шаблон:Audio

Шаблон:Multiple image

The γ (gamma) scale is a non-octave repeating musical scale invented by Wendy Carlos while preparing Beauty in the Beast (1986) though it does not appear on the album. It is derived from approximating just intervals using multiples of a single interval without, as is standard in equal temperaments, requiring an octave (2:1). It may be approximated by splitting the perfect fifth (3:2) into 20 equal parts (3:2Шаблон:Sup≈35.1 cents),Шаблон:Citation needed by splitting the neutral third into two equal parts, or ten equal parts of approximately 35.1 cents each (Шаблон:Audio) for 34.188 steps per octave.[1]

The scale step may also precisely be derived from using 20:11 (BШаблон:Music, 1035 cents, Шаблон:Audio) to approximate the interval Шаблон:Frac,[2] which equals 6:5 (EШаблон:Music, 315.64 cents, Шаблон:Audio). Thus the step is approximately 35.099 cents and there are 34.1895 per octave.[2]

<math>\frac{20\log_2{(3/2)}+11\log_2{(5/4)}+9\log_2{(6/5)}}{20^2+11^2+9^2}=0.0292487852</math> and <math>0.0292487852\times1200=35.0985422804 </math> (Шаблон:Audio)

"It produces nearly perfect triads."[3] "A 'third flavor', sort of intermediate to 'alpha' and 'beta', although a melodic diatonic scale is easily available."[1]

interval name size
(steps)
size
(cents)
just
ratio
just
(cents)
error
minor third 9 315.89 6:5 315.64 +0.25
major third 11 386.09 5:4 386.31 −0.22
perfect fifth 20 701.98 3:2 701.96 +0.02

See also

References

Шаблон:Reflist

Шаблон:Microtonal music Шаблон:Musical tuning Шаблон:Scales Шаблон:Wendy Carlos

Шаблон:Music-theory-stub

  1. 1,0 1,1 Carlos, Wendy (1989–96). "Three Asymmetric Divisions of the Octave", WendyCarlos.com.
  2. 2,0 2,1 Benson, Dave (2006). Music: A Mathematical Offering, p.232-233. Шаблон:ISBN. "Carlos has 34.188 γ-scale degrees to the octave, corresponding to a scale degree of 35.1 cents."
  3. Milano, Dominic (November 1986). "A Many-Colored Jungle of Exotic Tunings", Keyboard.