Шаблон:Short description
Файл:Gauss-Hermite quadrature weights.svg Weights versus xi for four choices of n
In numerical analysis , Gauss–Hermite quadrature is a form of Gaussian quadrature for approximating the value of integrals of the following kind:
<math>\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx.</math>
In this case
<math>\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)</math>
where n is the number of sample points used. The x i are the roots of the physicists' version of the Hermite polynomial H n (x ) (i = 1,2,...,n ), and the associated weights w i are given by
[1]
<math>w_i = \frac {2^{n-1} n! \sqrt{\pi}} {n^2[H_{n-1}(x_i)]^2}.</math>
Example with change of variable
Consider a function h(y) , where the variable y is Normally distributed : <math> y \sim \mathcal{N}(\mu,\sigma^2)</math>. The expectation of h corresponds to the following integral:
<math>E[h(y)] = \int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp \left( -\frac{(y-\mu)^2}{2\sigma^2} \right) h(y) dy</math>
As this does not exactly correspond to the Hermite polynomial, we need to change variables:
<math>x = \frac{y-\mu}{\sqrt{2} \sigma} \Leftrightarrow y = \sqrt{2} \sigma x + \mu</math>
Coupled with the integration by substitution , we obtain:
<math>E[h(y)] = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} \exp(-x^2) h(\sqrt{2} \sigma x + \mu) dx</math>
leading to:
<math>E[h(y)] \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^n w_i h(\sqrt{2} \sigma x_i + \mu)</math>
References
External links
Шаблон:Numerical integration
Партнерские ресурсы
Криптовалюты
Магазины
Хостинг
Разное
Викиум - Онлайн-тренажер для мозга
Like Центр - Центр поддержки и развития предпринимательства.
Gamersbay - лучший магазин по бустингу для World of Warcraft.
Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
«Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.